Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Can someone please check this; \[\begin{equation*} f(t)=\cos(t)\big(h(t-\pi)-h(t)\big) \end{equation*}\] \[ \newcommand\dd[1]{\,\mathrm d#1} % infinitesimal \newcommand\intl[4]{\int\limits_{#1}^{#2}{#3}{\dd #4}} % integral _{a}^{b}{f(x)}\dd x \begin{align*} \intl0\infty{f(t)e^{-pt}}t \end{align*} \]

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

\[\newcommand\dd[1]{\,\mathrm d#1} % infinitesimal \newcommand\intl[4]{\int\limits_{#1}^{#2}{#3}{\dd #4}} % integral _{a}^{b}{f(x)}\dd x \begin{align*} \intl0\infty{f(t)e^{-pt}}t&=\intl0\infty{\cos(t)\big(h(t-\pi)-h(t)\big)e^{-pt}}t\\ &=\intl0\infty{\cos(t)h(t-\pi)e^{-pt}}t-\intl0\infty{\cos(t)h(t)e^{-pt}}t\\ &=\intl\pi\infty{\cos(t)e^{-pt}}t-\intl0\infty{\cos(t)e^{-pt}}t\\ &=\left.\frac{e^{-pt}\big(-p\cos t+\sin t\big)}{(-p)^2+1^2}\right|_\pi^\infty-\left.\frac{e^{-pt}\big(-p\cos t+\sin t\big)}{(-p)^2+1^2}\right|_0^\infty\\ &=\frac{-e^{-p\pi}\big(-p\cos \pi+\sin \pi\big)}{p^2+1}+\frac{\big(-p\cos 0+\sin 0\big)}{p^2+1}\\ &=\frac{-pe^{-p\pi}}{p^2+1}-\frac{p}{p^2+1}\\ \\ &=\frac{-p\big(1+e^{-p\pi }\big)}{p^2+1}\\ \end{align*}\]
I haven't had my coffee yet, but I don't quite see how you managed to make h(t) vanish
  • phi
I think h is the step function

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

ah, okay, sure, I didn't realize that we could assume anything about h(t)
isn't that Laplace transform? .. let p = s
The unit heaviside step function \[h(t-a) =\begin{cases}0&t
|dw:1358356261290:dw|
h=H=u=θ
just integrate negative of cos(x) e^(-px) from 0 to pi
yes!! multiple ways of representing unit step function.
1 Attachment
think (h(t−π)−h(t)) as a switch (toward negative) that get's on at t=0 and off at t=pi .
yes that's correct!!
http://www.wolframalpha.com/input/?i=Integrate+e^%28-pt%29+cos%28t%29+from+0+to+pi
there's a short formula.for int e^(ax) cos(bx) dx ...also note that you can shift integral for step function.
http://www.wolframalpha.com/input/?i=Integrate+e^%28at%29+cos%28bt%29
|dw:1358358498070:dw|
|dw:1358358737716:dw| this should be simpler.
Ah yeah I can see that now, one integral is simpler than two
\[\newcommand\dd[1]{\,\mathrm d#1} % infinitesimal \newcommand\intl[4]{\int\limits_{#1}^{#2}{#3}{\dd #4}} % integral _{a}^{b}{f(x)}\dd x \begin{align*} \intl0\infty{f(t)e^{-pt}}t&=\intl0\infty{\cos(t)\big(h(t-\pi)-h(t)\big)e^{-pt}}t\\ &=\intl0\infty{\cos(t)h(t-\pi)e^{-pt}}t-\intl0\infty{\cos(t)h(t)e^{-pt}}t\\ &=\intl\pi\infty{\cos(t)e^{-pt}}t-\intl0\infty{\cos(t)e^{-pt}}t\\ &=\intl\pi0{\cos(t)e^{-pt}}t\\ &=\left.\frac{e^{-pt}\big(\sin (t)+p\cos (t)\big)}{(-p)^2+1^2}\right|_\pi^0\\ &=\frac{\sin 0+p\cos 0-e^{-p\pi}\big(\sin \pi+p\cos \pi\big)}{p^2+1^2}\\ &=\frac{p+pe^{-p\pi}}{p^2+1^2}\\ &=\frac{p\left(1+e^{-p\pi}\right)}{p^2+1^2}\\&\color{red}\checkmark \end{align*} \]
thanks experimentX
yw!! you work hard man!!

Not the answer you are looking for?

Search for more explanations.

Ask your own question