UnkleRhaukus
  • UnkleRhaukus
Can someone please check this; \[\begin{equation*} f(t)=\cos(t)\big(h(t-\pi)-h(t)\big) \end{equation*}\] \[ \newcommand\dd[1]{\,\mathrm d#1} % infinitesimal \newcommand\intl[4]{\int\limits_{#1}^{#2}{#3}{\dd #4}} % integral _{a}^{b}{f(x)}\dd x \begin{align*} \intl0\infty{f(t)e^{-pt}}t \end{align*} \]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
UnkleRhaukus
  • UnkleRhaukus
\[\newcommand\dd[1]{\,\mathrm d#1} % infinitesimal \newcommand\intl[4]{\int\limits_{#1}^{#2}{#3}{\dd #4}} % integral _{a}^{b}{f(x)}\dd x \begin{align*} \intl0\infty{f(t)e^{-pt}}t&=\intl0\infty{\cos(t)\big(h(t-\pi)-h(t)\big)e^{-pt}}t\\ &=\intl0\infty{\cos(t)h(t-\pi)e^{-pt}}t-\intl0\infty{\cos(t)h(t)e^{-pt}}t\\ &=\intl\pi\infty{\cos(t)e^{-pt}}t-\intl0\infty{\cos(t)e^{-pt}}t\\ &=\left.\frac{e^{-pt}\big(-p\cos t+\sin t\big)}{(-p)^2+1^2}\right|_\pi^\infty-\left.\frac{e^{-pt}\big(-p\cos t+\sin t\big)}{(-p)^2+1^2}\right|_0^\infty\\ &=\frac{-e^{-p\pi}\big(-p\cos \pi+\sin \pi\big)}{p^2+1}+\frac{\big(-p\cos 0+\sin 0\big)}{p^2+1}\\ &=\frac{-pe^{-p\pi}}{p^2+1}-\frac{p}{p^2+1}\\ \\ &=\frac{-p\big(1+e^{-p\pi }\big)}{p^2+1}\\ \end{align*}\]
whpalmer4
  • whpalmer4
I haven't had my coffee yet, but I don't quite see how you managed to make h(t) vanish
phi
  • phi
I think h is the step function

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

whpalmer4
  • whpalmer4
ah, okay, sure, I didn't realize that we could assume anything about h(t)
experimentX
  • experimentX
isn't that Laplace transform? .. let p = s
UnkleRhaukus
  • UnkleRhaukus
The unit heaviside step function \[h(t-a) =\begin{cases}0&t
experimentX
  • experimentX
|dw:1358356261290:dw|
UnkleRhaukus
  • UnkleRhaukus
h=H=u=θ
experimentX
  • experimentX
just integrate negative of cos(x) e^(-px) from 0 to pi
experimentX
  • experimentX
yes!! multiple ways of representing unit step function.
UnkleRhaukus
  • UnkleRhaukus
1 Attachment
experimentX
  • experimentX
think (h(t−π)−h(t)) as a switch (toward negative) that get's on at t=0 and off at t=pi .
experimentX
  • experimentX
yes that's correct!!
experimentX
  • experimentX
http://www.wolframalpha.com/input/?i=Integrate+e^%28-pt%29+cos%28t%29+from+0+to+pi
experimentX
  • experimentX
there's a short formula.for int e^(ax) cos(bx) dx ...also note that you can shift integral for step function.
experimentX
  • experimentX
http://www.wolframalpha.com/input/?i=Integrate+e^%28at%29+cos%28bt%29
experimentX
  • experimentX
|dw:1358358498070:dw|
experimentX
  • experimentX
|dw:1358358737716:dw| this should be simpler.
UnkleRhaukus
  • UnkleRhaukus
Ah yeah I can see that now, one integral is simpler than two
UnkleRhaukus
  • UnkleRhaukus
\[\newcommand\dd[1]{\,\mathrm d#1} % infinitesimal \newcommand\intl[4]{\int\limits_{#1}^{#2}{#3}{\dd #4}} % integral _{a}^{b}{f(x)}\dd x \begin{align*} \intl0\infty{f(t)e^{-pt}}t&=\intl0\infty{\cos(t)\big(h(t-\pi)-h(t)\big)e^{-pt}}t\\ &=\intl0\infty{\cos(t)h(t-\pi)e^{-pt}}t-\intl0\infty{\cos(t)h(t)e^{-pt}}t\\ &=\intl\pi\infty{\cos(t)e^{-pt}}t-\intl0\infty{\cos(t)e^{-pt}}t\\ &=\intl\pi0{\cos(t)e^{-pt}}t\\ &=\left.\frac{e^{-pt}\big(\sin (t)+p\cos (t)\big)}{(-p)^2+1^2}\right|_\pi^0\\ &=\frac{\sin 0+p\cos 0-e^{-p\pi}\big(\sin \pi+p\cos \pi\big)}{p^2+1^2}\\ &=\frac{p+pe^{-p\pi}}{p^2+1^2}\\ &=\frac{p\left(1+e^{-p\pi}\right)}{p^2+1^2}\\&\color{red}\checkmark \end{align*} \]
UnkleRhaukus
  • UnkleRhaukus
thanks experimentX
experimentX
  • experimentX
yw!! you work hard man!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.