geerky42
  • geerky42
Find the value of x and y:\[ (2x)^{\ln 2} = (3y)^{\ln 3} \]\[ 3^{\ln x} = 2^{\ln y}\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Goten77
  • Goten77
hmm
Goten77
  • Goten77
|dw:1358145356088:dw|
anonymous
  • anonymous
Is this a system of equations?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Goten77
  • Goten77
|dw:1358145846151:dw|
Goten77
  • Goten77
|dw:1358147158729:dw|
anonymous
  • anonymous
.... @Goten77 hard to read it... what are you doing?
Goten77
  • Goten77
|dw:1358147202405:dw|
Goten77
  • Goten77
think bout it..... not that hard to read..... but it wont ever end....
anonymous
  • anonymous
\[ \large \begin{array}{rcl} (2x)^{\ln2}&=&(3y)^{\ln3} \\ \ln(2x)\ln(2)&=&\ln(3y)\ln(3) \\ \ln(2)\ln(2) +\ln(2) \ln(x) &=&\ln(3)\ln(y)+\ln(3)\ln(3) \\ \ln(2) \ln(x) - \ln(3)\ln(y) &=&\ln(3)\ln(3)-\ln(2)\ln(2) \end{array} \] \[ \large \begin{array}{rcl} 3^{\ln x}&=&2^{\ln y} \\ \ln(3)\ln (x)&=&\ln(2)\ln (y) \\ \ln(3)\ln (x) - \ln(2)\ln (y) &=& 0 \end{array} \] \[ \begin{bmatrix} \ln(2)&-\ln(3) \\ \ln(3)&- \ln(2) \end{bmatrix} \begin{bmatrix} \ln(x) \\ \ln(y) \end{bmatrix} = \begin{bmatrix} \ln(3)\ln(3)-\ln(2)\ln(2) \\ 0 \end{bmatrix} \]
anonymous
  • anonymous
If you put it into a matrix, it's not as big a mess.
anonymous
  • anonymous
then at the very end raise it to the power of \(e\). It could be a singular matrix though?
Goten77
  • Goten77
strange its basically a property..... memorable

Looking for something else?

Not the answer you are looking for? Search for more explanations.