anonymous
  • anonymous
which statement will be true if you increase the frequency of a periodic wave a-the number of waves per sec. will increase b-the time taken to complete one cycle will increase c-the amplitude will increase d-there will be no change in the period
Physics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

ash2326
  • ash2326
@torr.kitty Frequency is defined in no. of ways \[\Large \text{The no. of cycles (or waves) per second}\] \[\large \text{or}\] \[\Large \text{ The inverse of time period of a wave}\] What do you think will be the answer? Use the definition applicable
anonymous
  • anonymous
c?
ash2326
  • ash2326
How do you say c? Frequency is independent of amplitude and vice versa

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
hmm i dont know:0 is it a
ash2326
  • ash2326
Frequency is defined as no. of waves / second If you increase frequency, then no. of waves per second will increase
anonymous
  • anonymous
thank you!
ash2326
  • ash2326
Do you understand the solution?
anonymous
  • anonymous
yes
ash2326
  • ash2326
:D
anonymous
  • anonymous
answer -a

Looking for something else?

Not the answer you are looking for? Search for more explanations.