Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

prove: (1+cosθ+cos2θ)/(sinθ+sin2θ)=cotθ

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
\(\cos2\theta=2\cos^2\theta-1\) \(\sin2\theta=2\sin\theta\cos\theta\) using these see if u can do. If u find any difficulties and need some more help plz ask:)
\[ (1+\cosθ+\cos2θ)/(\sinθ+\sin2θ)=\cotθ \implies\]\[ \cosθ+2\cos^2θ =\frac{\cos \theta}{\sin \theta}(\sin \theta+2 \sin \theta \cos \theta)=\cos \theta + 2 \cos^2 \theta\]
prove: (1+cosθ+cos2θ)/(sinθ+sin2θ)=cotθ (1+cosθ+cos2θ)/(sinθ+2sinθcosθ) (cosθ+cos θ⁡ )/(sinθ+sinθ) cos2θ/sin2θ (2〖cos〗^2 θ-1)/2cosθsinθ (cosθ-1)/sinθ not sure where i went wrong... :/

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Taking the expression in the left hand side \[\frac{1+\cos\theta+\cos2\theta}{\sin\theta+\sin2\theta}\] \[=\frac{1+\cos\theta+2\cos^2\theta-1}{\sin\theta+2\sin\theta\cos\theta}\] factor out \(\cos\theta\) from numerator and \(\sin\theta\) from denominator \[=\frac{\cos\theta+2\cos^2\theta}{\sin\theta+2\sin\theta\cos\theta}\] \[=\frac{\cos\theta(1+2\cos\theta)}{\sin\theta(1+2\cos\theta)}\] cancelling the common factor \((1+2\cos\theta)\) \[=\frac{\cos\theta}{\sin\theta}\] \[=\cot\theta\] nw we have shown that lhs=rhs hence proved
Is that clear @sarah11028
Sometimes I wonder why I'm even doing maths....hahaha thank you for you help! :)
welcome:) it is really easy if practice a bit:)
haahha lets hope it get easy! :) And hopefully it'll be my last year of maths
Cos3θ=4cos^3θ-3cosθ (I am trying to prove this identity) cos3θ = cos(θ+2θ) = cosθ cos2θ - sinθ sin2θ = cosθ (2cos^2θ - 1) - 2sin^2θ cosθ (basically here can you please explain how to go from sinθ sin2θ ->2sin^2θ cosθ ) = 2cos^3θ - cosθ - 2(1-cos^2θ) cosθ = 4cos^3θ - 3cosθ thanks
\[\sin2\theta=2\sin\theta\cos\theta\] \[\sin2\theta*\sin\theta=2\sin\theta\cos\theta*\sin\theta\] \[=2\sin\theta*\sin\theta*cos\theta\] \[=2\sin^2\theta\cos\theta\] Is that clear?
\[\sin2\theta=\sin(\theta+\theta)\] \[=\sin\theta\cos\theta+\cos\theta\sin\theta\] \[=2\sin\theta\cos\theta\]
getting it @sarah110128?
ohh thanks, you've been a great help! :)
welcome:)

Not the answer you are looking for?

Search for more explanations.

Ask your own question