anonymous
  • anonymous
prove: (1+cosθ+cos2θ)/(sinθ+sin2θ)=cotθ
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ajprincess
  • ajprincess
\(\cos2\theta=2\cos^2\theta-1\) \(\sin2\theta=2\sin\theta\cos\theta\) using these see if u can do. If u find any difficulties and need some more help plz ask:)
anonymous
  • anonymous
\[ (1+\cosθ+\cos2θ)/(\sinθ+\sin2θ)=\cotθ \implies\]\[ \cosθ+2\cos^2θ =\frac{\cos \theta}{\sin \theta}(\sin \theta+2 \sin \theta \cos \theta)=\cos \theta + 2 \cos^2 \theta\]
anonymous
  • anonymous
prove: (1+cosθ+cos2θ)/(sinθ+sin2θ)=cotθ (1+cosθ+cos2θ)/(sinθ+2sinθcosθ) (cosθ+cos θ⁡ )/(sinθ+sinθ) cos2θ/sin2θ (2〖cos〗^2 θ-1)/2cosθsinθ (cosθ-1)/sinθ not sure where i went wrong... :/

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ajprincess
  • ajprincess
Taking the expression in the left hand side \[\frac{1+\cos\theta+\cos2\theta}{\sin\theta+\sin2\theta}\] \[=\frac{1+\cos\theta+2\cos^2\theta-1}{\sin\theta+2\sin\theta\cos\theta}\] factor out \(\cos\theta\) from numerator and \(\sin\theta\) from denominator \[=\frac{\cos\theta+2\cos^2\theta}{\sin\theta+2\sin\theta\cos\theta}\] \[=\frac{\cos\theta(1+2\cos\theta)}{\sin\theta(1+2\cos\theta)}\] cancelling the common factor \((1+2\cos\theta)\) \[=\frac{\cos\theta}{\sin\theta}\] \[=\cot\theta\] nw we have shown that lhs=rhs hence proved
ajprincess
  • ajprincess
Is that clear @sarah11028
anonymous
  • anonymous
Sometimes I wonder why I'm even doing maths....hahaha thank you for you help! :)
ajprincess
  • ajprincess
welcome:) it is really easy if practice a bit:)
anonymous
  • anonymous
haahha lets hope it get easy! :) And hopefully it'll be my last year of maths
anonymous
  • anonymous
Cos3θ=4cos^3θ-3cosθ (I am trying to prove this identity) cos3θ = cos(θ+2θ) = cosθ cos2θ - sinθ sin2θ = cosθ (2cos^2θ - 1) - 2sin^2θ cosθ (basically here can you please explain how to go from sinθ sin2θ ->2sin^2θ cosθ ) = 2cos^3θ - cosθ - 2(1-cos^2θ) cosθ = 4cos^3θ - 3cosθ thanks
anonymous
  • anonymous
@ajprincess
ajprincess
  • ajprincess
\[\sin2\theta=2\sin\theta\cos\theta\] \[\sin2\theta*\sin\theta=2\sin\theta\cos\theta*\sin\theta\] \[=2\sin\theta*\sin\theta*cos\theta\] \[=2\sin^2\theta\cos\theta\] Is that clear?
ajprincess
  • ajprincess
\[\sin2\theta=\sin(\theta+\theta)\] \[=\sin\theta\cos\theta+\cos\theta\sin\theta\] \[=2\sin\theta\cos\theta\]
ajprincess
  • ajprincess
getting it @sarah110128?
anonymous
  • anonymous
ohh thanks, you've been a great help! :)
ajprincess
  • ajprincess
welcome:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.