Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

Argonx16 Group Title

Integration (See inside)

  • one year ago
  • one year ago

  • This Question is Closed
  1. Argonx16 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Integrate: \[\int\limits_{1}^{3} \frac {1}{x+1} dx \] I'm brain farting hard right now. Probably only need like 2 steps worked out.

    • one year ago
  2. Argonx16 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    EDIT: I totally meant \[\int\limits_{1}^{3} \frac {x}{x+1}dx\]

    • one year ago
  3. zepdrix Group Title
    Best Response
    You've already chosen the best response.
    Medals 2

    It's a simple U-substitution with a little trick involved. It's very easy to get confused on a problem like this one. :)

    • one year ago
  4. Dido525 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    You have to do a little trick with u-substitution in this case.

    • one year ago
  5. zepdrix Group Title
    Best Response
    You've already chosen the best response.
    Medals 2

    Let \(\large u=x+1\), solve for x giving us \(\large x=u-1\). Then differentiating gives us, \(\large du=dx\).

    • one year ago
  6. Dido525 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    I guess I will let Zepdrix finish it off :P .

    • one year ago
  7. zepdrix Group Title
    Best Response
    You've already chosen the best response.
    Medals 2

    Understand what's going on argon? :O It's just that little piece \(\large x=u-1\) that is easy to forget about.

    • one year ago
  8. Argonx16 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    @Dido525 Thanks anyways c: @zepdrix Ok, let me go through it, one sec.

    • one year ago
  9. Dido525 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    If you want I can show you another way to do this question other than what Zepdrix is doing.

    • one year ago
  10. Argonx16 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    @zepdrix So I looked at my work, and I have tried u-substitution, and I did get the fact that du=dx (u=x+1, du=1 dx, du=dx), but how does that fit into the big picture? @Dido525 Thanks, but I'm fine for now :D

    • one year ago
  11. zepdrix Group Title
    Best Response
    You've already chosen the best response.
    Medals 2

    So what will happen is, you'll have the addition/subtraction on TOP instead of the bottom of the fraction when you perform this substitution. That's good news, cause we'll be able to break it up into a couple of fractions from there.

    • one year ago
  12. zepdrix Group Title
    Best Response
    You've already chosen the best response.
    Medals 2

    Before we had that messy term x+1 in the bottom, so we couldn't do much with it.. but with a u-1 in the top, we can split it up nicely.

    • one year ago
  13. zepdrix Group Title
    Best Response
    You've already chosen the best response.
    Medals 2

    \[\large \int\limits \frac{x}{x+1}dx \qquad \rightarrow \qquad \int\limits \frac{u-1}{u}du\]I think we get something like this yes? Which we can write as,\[\large \int\limits \frac{u}{u}-\frac{1}{u}du\]

    • one year ago
  14. Dido525 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    Long division would yield the same thing by the way. Just a note.

    • one year ago
  15. zepdrix Group Title
    Best Response
    You've already chosen the best response.
    Medals 2

    Ah good call :3

    • one year ago
  16. Argonx16 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Wow... that's some clever manipulation! (I GET IT!) @Dido525 Now that you mention it, I think my teacher did say that long division was necessary on some of the questions.

    • one year ago
  17. zepdrix Group Title
    Best Response
    You've already chosen the best response.
    Medals 2

    Yah that makes more sense actually, instead of doing a substitution. Just add and subtract 1 from the top.\[\large \int\limits \frac{x+1-1}{x+1}dx \qquad \rightarrow \qquad \int\limits \frac{x+1}{x+1}-\frac{1}{x+1}dx\]

    • one year ago
  18. Dido525 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    Well it's not NECESSARY but it's DEFINITELY Easier :P .

    • one year ago
  19. Argonx16 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Ok. Thanks so much guys! I was so puzzled as to why Wolfram Alpha had \[\int\limits_ {}^{} 1- \frac{1}{x+1}\]

    • one year ago
  20. Dido525 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    Long division again.

    • one year ago
  21. Argonx16 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Yep!

    • one year ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.