anonymous
  • anonymous
integratation of power of sines and cosines: ∫ sin^4 xcos^2xdx
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
this is calculus
anonymous
  • anonymous
\[-\frac{ \cos ^{5}x }{ 5 }+\frac{ \cos ^{7}x }{ 7 }+c\]
anonymous
  • anonymous
how come? what case did you used? is it case 2?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
bak reyiz, cos^2 x=1-sin^2 x. biliyon mu bunu??
anonymous
  • anonymous
what? im sorry i cant understant your language, could you speak in english please?
anonymous
  • anonymous
can someone please help me? :(
Callisto
  • Callisto
I think it's not like what marsss did there... \[∫ sin^4 xcos^2xdx\]\[=∫ sin^4 x(1-sin^2x)dx\]\[=∫ sin^4x-sin^6xdx\]\[=∫ (sin^2x)^2dx-∫(sin^2x)^3dx\]\[=\frac{1}{4}∫ (1-cos2x)^2dx-\frac{1}{8}∫(1-cos2x)^3dx\]\[=\frac{1}{4}∫ (1-2cos2x+cos^22x)dx-\frac{1}{8}∫(1-3cos2x+3cos^22x-cos^32x)dx\] Reduce the power of cosine into 1 using doucle angle formula, except for cos^3(2x). Good luck :|

Looking for something else?

Not the answer you are looking for? Search for more explanations.