Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

A circle has radius 7 cm. How many degrees is the central angle subtended by an arc of length 5.5 cm?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
|dw:1358256330776:dw|HINT:
where theta is in radian
DOES IT HELP?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

find the theta in radian and convert it to degrees.
Elaborate more please :))))
|dw:1358256816856:dw|
okkaaaay.. haha! sorry if i'm slow. :)
lol nah...its alright....then what u wanna do is convert theta into degree (cuz this equation will let u find theta in 'radians') to do that...u follow this eq. |dw:1358256989692:dw|
ohh lol i thought its pi/180 XD HAHA. thanks! lol
its pi/180 when u wanna convert degree into radian :) here we're converting radian into degrees.
theres a formula for this ( angle/360 degrees ) = ( arclength/ circumference ) so substitute: x /360 = 5.5/14pi 14pi bcuz "Circumference = 2pi(radius)" so 2pi(7)= 14pi x= ((360)(5.5))/14pi x= 1980/14pi or 990/7pi or 45.02 degrees ^.^
thanks for the both of you :) haha

Not the answer you are looking for?

Search for more explanations.

Ask your own question