anonymous
  • anonymous
How many solutions does the system have? 3x + 12y = 20 y = –1/4 x + 5/3
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Do you know how to solve systems such as this?
anonymous
  • anonymous
Hint: multiply\[y=\frac{-x}{4}+\frac{5}{3}\]by 12.
TheViper
  • TheViper
If \[\Large{\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}}\] Then it has INFINITELY MANY solutions. \[\Large{\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}\neq\dfrac{c_1}{c_2}}\] Then it has NO solutions. \[\Large{\dfrac{a_1}{a_2}\neq\dfrac{b_1}{b_2}}\] Then it has only ONE solution.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

TheViper
  • TheViper
Here, \[\Large{\color{red}{a_1=3, a_2=\dfrac{-1}{4}, b_1=12, b_2=1, c_1=20, c_2=\dfrac{5}{3}.}}\]
anonymous
  • anonymous
oh alright i think i see

Looking for something else?

Not the answer you are looking for? Search for more explanations.