anonymous
  • anonymous
Please check my answer (PreCal)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Solve csc x + 2 = 0 for 0 < x < 2pi. I think it is 7pi/6 and 11pi/6
campbell_st
  • campbell_st
so you have csc(x) = -2 so sin(x) = -1/2 this is 3rd and 4th quadrants so pi + pi/6 = 7pi/6 (3rd quadrant) 2pi - pi/6 = 11pi/6 (4th Quadrant) so you solution looks great... well done
anonymous
  • anonymous
Thanks. Can you help with this one though, I am confused. Solve 2 sin x + sqrt(3) < 0 for 0 x < 2.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

campbell_st
  • campbell_st
ok... so you will start with \[2\sin(x) < -\sqrt{3} \] so \[\sin(x) < - \frac{\sqrt{3}}{2}\] so aren't there 2 inequaitites to this in the 3rd quadrant \[\pi < x < \frac{4\pi}{3}\] and the 4th quadrant \[\frac{5\pi}{3} < x < 2\pi\] tough question, I not really confident on the solutions...
anonymous
  • anonymous
The answer choices are \[\frac{ 4\pi }{3 } < x < \frac{ 5\pi }{ 3 }\] \[\frac{ 2\pi }{3 } < x < \frac{ 4\pi }{ 3 }\] \[\frac{ 7\pi }{6 } < x < \frac{ 11\pi }{ 6 }\] \[\frac{ 5\pi }{6 } < x < \frac{ 7\pi }{ 6 }\]
anonymous
  • anonymous
so it would be a?
campbell_st
  • campbell_st
that would be my best guess... but its only a guess...
anonymous
  • anonymous
Thank you!

Looking for something else?

Not the answer you are looking for? Search for more explanations.