anonymous
  • anonymous
prove that the square of any integer a is either of the form 3k or 3k+1 for some integer k. [hint by division algorithm, a must be of the form 2q, 3q +1, or 3q+2]
Discrete Math
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
any integer can be written as 3q, 3q +1, or 3q+2....q being an integer case 1 when n=3q clearly n^2=9q^2=3(3q^2)
anonymous
  • anonymous
when n=3q +1 n^2=9q^2+6q+1=3(3q^2+2q)+1
anonymous
  • anonymous
when n=3q +2 n^2=9q^2+12q+4=3(3q^2+4q+1)+1 (form 3k+1)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
the square of any integer a is either of the form 3k or 3k+1

Looking for something else?

Not the answer you are looking for? Search for more explanations.