Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

A game is played in which three dice are rolled, and the number of “1”s that appear is recorded. a) Determine the probability distribution for the random variable X, the number of “1”s in three rolls. b) Suppose you win $1 if a “1” appears once, you win $2 if a “1” appears twice, and you win $3 if a “1” appears three times. However, if there are no “1”s rolled, then you lose $1. Calculate your expected winnings/losses from playing this game. c) Is this game “fair”? Explain.

Probability
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
The probability of rolling a 1 on a die is 1/6 and the probability of not rolling a 1 on a die is 5/6. \[P(0\ 1s)=\frac{5}{6}\times \frac{5}{6}\times \frac{5}{6}\] \[P(1\ 1)=\frac{1}{6}\times \frac{5}{6}\times \frac{5}{6}\] \[P(2\ 1s)=\frac{1}{6}\times \frac{1}{6}\times \frac{5}{6}\] \[P(3\ 3s)=\frac{1}{6}\times \frac{1}{6}\times \frac{1}{6}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question