DLS
  • DLS
limits
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
DLS
  • DLS
\[\LARGE \lim_{x \rightarrow 0} \frac{1+e^{\frac{-1}{x}}}{1-e^{\frac{-1}{x}}} \]
DLS
  • DLS
1) 1 2)-1 3)0 4)Does not exist
hartnn
  • hartnn
can u use L'Hopitals ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

DLS
  • DLS
anything
hartnn
  • hartnn
then try, x= -1/y to get y->-infinity and then L'Hopitals.
DLS
  • DLS
|dw:1358405846397:dw| how will we solve this LHL anyway?
hartnn
  • hartnn
where did 'a' come from ? did you try x=-1/y ?
DLS
  • DLS
its 0 not a nevermind sry :o and i dont want to use L hospital because i know answer is 4 :P
hartnn
  • hartnn
why do i get -1 ? :P
DLS
  • DLS
LHL=-1 RHL=1 Limit does not exist :o
hartnn
  • hartnn
confirmed with wolf ?
DLS
  • DLS
no with answer key..:o but how did we solve LHL to -1
hartnn
  • hartnn
hmm....you can put h=-h in LHL to get same form as of RHL, that is of h->0+
DLS
  • DLS
|dw:1358406440539:dw| but this :/??
hartnn
  • hartnn
you found RHL ? or not ? because above thing is just substituting x +h=a for that i suggested, x=-1/y instead.(and you get -1 then)
DLS
  • DLS
why x=-1/y? can u show clearly :/
hartnn
  • hartnn
x=-1/y ---->-1/x = y to make the exponent of e as 'y' so that using L'Hopitals is easy (1+e^y)/(1-e^y) -----> e^y/(-e^y) ---->-1
DLS
  • DLS
itni si baat batane me aadha ghanta lagadia be :p
hartnn
  • hartnn
:P but the limit doesn't exist, right ? you got that using LHL and RHL ?
DLS
  • DLS
yes..
hartnn
  • hartnn
good :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.