At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

See more answers at brainly.com

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the **expert** answer you'll need to create a **free** account at **Brainly**

\[\LARGE \lim_{x \rightarrow 0} \frac{1+e^{\frac{-1}{x}}}{1-e^{\frac{-1}{x}}} \]

1) 1
2)-1
3)0
4)Does not exist

can u use L'Hopitals ?

anything

then try, x= -1/y
to get y->-infinity
and then L'Hopitals.

|dw:1358405846397:dw|
how will we solve this LHL anyway?

where did 'a' come from ?
did you try x=-1/y ?

its 0 not a nevermind sry :o
and i dont want to use L hospital because i know answer is 4 :P

why do i get -1 ? :P

LHL=-1
RHL=1
Limit does not exist :o

confirmed with wolf ?

no with answer key..:o
but how did we solve LHL to -1

hmm....you can put h=-h in LHL to get same form as of RHL, that is of h->0+

|dw:1358406440539:dw|
but this :/??

why x=-1/y?
can u show clearly :/

itni si baat batane me aadha ghanta lagadia be :p

:P
but the limit doesn't exist, right ? you got that using LHL and RHL ?

yes..

good :)