Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

jollysailorbold

  • 3 years ago

What is the solution set of {x | x < -3} ∩ {x | x > 5}? -all numbers except -3 and 5 -the numbers between -3 and 5 -the empty set -all real numbers it's "the numbers between -3 and 5" right?

  • This Question is Closed
  1. jollysailorbold
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    wait i mean all numbers except -3 and 5

  2. hartnn
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    no, x< -3 means numbers like -4,-5,-6,..... x>5 meanss 6,7,8,9.... do you see any intersection ? common elements ?

  3. jollysailorbold
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    it's all numbers except -3 and 5, i read it wrong, sorry :)

  4. hartnn
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    first tell me are there any common elements ? and thats incorrect.... ∩ = intersection = common elements.

  5. jollysailorbold
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    aw, i thought i was getting the hang of it.

  6. hartnn
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    |dw:1358422502288:dw|

  7. jollysailorbold
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    empty set, then?

  8. hartnn
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    yes!

  9. jollysailorbold
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    haha, thanks once again:)

  10. hartnn
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    welcome ^_^

  11. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy