The least positive number such that the number of divisors of the number of divisors of the number of divisors of the number of divisors of the original number is \(3\).
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
The least positive number such that the number of divisors of the number of divisors of the number of divisors of the number of divisors of the original number is \(3\).
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
Now, I get \(72\) which is apparently wrong by doing repeated backwardworking.
```
72 => 1,2,3,4,6,8,9,12,24,36,72


V
12 => 1,2,3,4,6,12


V
6 => 1,2,3,6


V
4 => 1,2,4


V
3
```
And to find the least number, you first prime factorize the number, then adjust the powers such that the least prime number gets the highest power and so on.
I had seen a very similar question on OS long time ago.
That is how I could instantly say 60 ! :P
Nevermind, I follow your reasoning very well. Kudos! B