anonymous
  • anonymous
Integrate the following:
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[∫ \sin(2x-3)dx\]
slaaibak
  • slaaibak
To make it a bit easier, let's use substitution: \[u = 2x - 3 \rightarrow du = 2 dx \rightarrow dx = {1 \over 2} du\] Now the integral becomes: \[\int\limits {1 \over 2} \sin {u} du = -{1 \over 2}\cos u + C\] substituting u=2x-3 back: \[-{1 \over 2} \cos (2x - 3) + C\]
anonymous
  • anonymous
i had positive 1/3 not -1/2

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

slaaibak
  • slaaibak
How did you get a 1/3 ?
anonymous
  • anonymous
\[-1/3∫ \sin(2-3x)d(2-3x) ... 1/3\cos(2-3x)+c\]
slaaibak
  • slaaibak
but in the problem you stated it's 2x - 3, and not 2 - 3x?
anonymous
  • anonymous
i meant 2-3x lol sorry!
hba
  • hba
Well if that is the case your answer would be \[\frac{ 1 }{ 3 }\cos(2-3x)+C\] Which you said you got. Therefore,you are correct.
anonymous
  • anonymous
yay : )

Looking for something else?

Not the answer you are looking for? Search for more explanations.