anonymous
  • anonymous
Integrate the following:
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
\[∫ \sin(2x-3)dx\]
slaaibak
  • slaaibak
To make it a bit easier, let's use substitution: \[u = 2x - 3 \rightarrow du = 2 dx \rightarrow dx = {1 \over 2} du\] Now the integral becomes: \[\int\limits {1 \over 2} \sin {u} du = -{1 \over 2}\cos u + C\] substituting u=2x-3 back: \[-{1 \over 2} \cos (2x - 3) + C\]
anonymous
  • anonymous
i had positive 1/3 not -1/2

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

slaaibak
  • slaaibak
How did you get a 1/3 ?
anonymous
  • anonymous
\[-1/3∫ \sin(2-3x)d(2-3x) ... 1/3\cos(2-3x)+c\]
slaaibak
  • slaaibak
but in the problem you stated it's 2x - 3, and not 2 - 3x?
anonymous
  • anonymous
i meant 2-3x lol sorry!
hba
  • hba
Well if that is the case your answer would be \[\frac{ 1 }{ 3 }\cos(2-3x)+C\] Which you said you got. Therefore,you are correct.
anonymous
  • anonymous
yay : )

Looking for something else?

Not the answer you are looking for? Search for more explanations.