Find x when 2^x=16^y, 16^x=8^(y-1) Okay when I exponentiate for the first part I get y=x/3 and for the second part I get y=4x-1/3. However, I don't understand how to get one x. I don't know what the next step is. Please help me.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find x when 2^x=16^y, 16^x=8^(y-1) Okay when I exponentiate for the first part I get y=x/3 and for the second part I get y=4x-1/3. However, I don't understand how to get one x. I don't know what the next step is. Please help me.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[2^x=16^y\] \[2^x=2^{4y}\] \[x=4y\]
then \[16^x=8^{y-1}\] \[2^{4x}=2^{3(y-1)}\] \[4x=3y-3\]
should be good from there yes?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

okay I see how you got that but in order to find x do I have to set them equal to each other? I am given answers and it is not in that form. The answers are like in fraction form.
There is only one answer and I am confused because I am given two equations for one problem
I have a question @khuangg , howcome on 16^x=8^(y-1) you distributed the exponent 3 in to (y-1) but on the other side you didn't distribute the 4 in to the x?
I still can't figure this out =(
@khuangg is wrong.
@miss_karina Have you learnt the topic Indices?

Not the answer you are looking for?

Search for more explanations.

Ask your own question