Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

3psilon Group Title

The tub of a washer goes into its spin cycle, starting from rest and gainiing angular speed steadily for 8.0 s when it is turning at 5.0 rev/s. At this time the person doing the laundry opens the lid and a safety switch turns off the washer. The tub smoothly slows to rest in 12.0 s. Through how many revolutions does the tub turn whil it is in motion.

  • one year ago
  • one year ago

  • This Question is Closed
  1. Inspired Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    Look at the problem in two separate parts. Before the lid is opened, the initial angular speed is 0. Your final w is 5 rev/s. Time is 8 seconds. Angular acceleration is change of angular velocity over time. Use the common form: wf^2-wi^2=2(alpha)(theta) and isolate theta to get the number of revolutions of the first part. You should get 20rev.. Afterwards, when the system slows down, you now have your initial speed as 5 rev/s. It comes to rest so wf is 0. Solve for alpha. Plug it in to common form and solve for theta. You get 30 rev. Add the two parts, you should get 50 rev.

    • one year ago
  2. 3psilon Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    That answer is wrong

    • one year ago
  3. Shane_B Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    @Inspired's answer is correct. Doing it another way you get: \[\large \Delta \theta = (\bar{\omega_1}t_1)+(\bar{\omega_2}t_2)\]\[\large \Delta \theta = \frac{(0+5(2\pi \space rads/s))(8s)}{2} + \frac{(5(2\pi \space rads/s)+0 \space rads/s)(12s)}{2}\]\[\large \Delta \theta = 20(2\pi \space rad)+30(2\pi \space rad)=50(2\pi\space rad)=100\pi \space rad\]\[\large \frac{100\pi \space rad}{2\pi \space rad}=50 \space revolutions\] For more info see: http://hyperphysics.phy-astr.gsu.edu/hbase/rotq.html

    • one year ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.