anonymous
  • anonymous
Find a quadratic function in standard form that has the following points: (1, -2); (2, -2); (3, -4).
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
tkhunny
  • tkhunny
Can you find the Axis of Symmetry without doing any algebra?
anonymous
  • anonymous
im not sure
tkhunny
  • tkhunny
Shall we guess that (0,-4) is yet another point?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

tkhunny
  • tkhunny
Axis of Symmetry is x = 3/2. Please tell me why?
tkhunny
  • tkhunny
Quadratic Function in Standard Form: \(f(x) = ax^{2} + bx + c\) From your three points: (1, -2); (2, -2); (3, -4). We have: \(f(x) = a(1)^{2} + b(1) + c = -2\) \(f(x) = a(2)^{2} + b(2) + c = -2\) \(f(x) = a(3)^{2} + b(3) + c = -4\) And you have some algebra in your future!

Looking for something else?

Not the answer you are looking for? Search for more explanations.