anonymous
  • anonymous
Evaluate the following definite integral
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\int\limits_{-1}^{2} \left| X \right| dx\]
anonymous
  • anonymous
I got 3/2 this is the wrong answer the correct answer is 2.5
hba
  • hba
Can you show me your working ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[\left| x \right| \] \[\frac{ x^2 }{ 2 }\] \[(\frac{ 2^2 }{ 2 })- (\frac{ -1^2 }{ 2 })\] (4/2)-(1/2) 3/2
tkhunny
  • tkhunny
1) Convention suggests that \(X\) is NOT the same as \(x\). Please don't switch variable in the middle of a problem. 2) You have simply ignored the absolute value. That's no good. Split the integral at \(x = 0\) and see if you can manage a different result.
anonymous
  • anonymous
I'm still not sure what to do
anonymous
  • anonymous
|dw:1358608829929:dw|
tkhunny
  • tkhunny
\(\int\limits_{-1}^{2}|x|\;dx = \int\limits_{-1}^{0}|x|\;dx + \int\limits_{0}^{2}|x|\;dx = \int\limits_{-1}^{0}(-x)\;dx + \int\limits_{0}^{2}(x)\;dx\)
anonymous
  • anonymous
That should help
anonymous
  • anonymous
thanks I will try that

Looking for something else?

Not the answer you are looking for? Search for more explanations.