anonymous
  • anonymous
trigonometry
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\huge{\cos \frac{\pi}{7}}-\cos \frac{2\pi}{7}+\cos \frac{3\pi}{7}=\frac{1}{2}\]
anonymous
  • anonymous
prove
anonymous
  • anonymous
so far i managed to write \[\cos \frac{ \pi }{ 7 }-2\cos^2\frac{ \pi }{ 7 }+1+\cos \frac{ 2\pi }{ 7 }\cos \frac{ \pi }{ 7 }-\sin \frac{ 2\pi }{ 7 }\sin \frac{ \pi }{ 7 }\] \[\cos \frac{ \pi }{ 7 }-2\cos ^2\frac{ \pi }{ 7 }+1+2\cos^3\frac{ \pi }{ 7 }-\cos \frac{ \pi }{ 7 }-2\cos \frac{ \pi }{ 7 }+2\cos^3\frac{ \pi }{ 7 }\] \[4\cos^3\frac{ \pi }{ 7 }-2\cos^2\frac{ \pi }{ 7 }-2\cos\frac{\pi}{7}+1\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
without using a calculator
anonymous
  • anonymous
guys i have the solution but it is so superficial i'll put it just now
anonymous
  • anonymous
1 Attachment
anonymous
  • anonymous
no idea about S
shubhamsrg
  • shubhamsrg
*
anonymous
  • anonymous
is that the bookmark symbol
anonymous
  • anonymous
cos(pi/7) -cos(2pi/7)+ cos(3pi/7) cos(pi/7)+cos(3pi/7)+cos(5pi/7) {2sin(pi/7)cos(pi/7) + 2 sin(pi/7) cos(3pi/7) + 2 sin(pi/7) cos(5pi/7)}/2 sin(pi/7)
shubhamsrg
  • shubhamsrg
That is just a comment, which will enable me to receive notifications whenever it gets discussed * is just a symbol, yes, bookmark symbol
anonymous
  • anonymous
are you saying -cos 2 pi/7=cos 5 pi/7
anonymous
  • anonymous
yes
anonymous
  • anonymous
y
anonymous
  • anonymous
-cos 2a=cos 5a
anonymous
  • anonymous
cos(5pi/7) =cos(pi -2pi/7) = -cos(2pi/7)
anonymous
  • anonymous
k very clear
anonymous
  • anonymous
It is because cos(pi-a)=-cosa
anonymous
  • anonymous
Now, u need to use 2 sinA cosB = sin(A+B) - sin(A-B)
anonymous
  • anonymous
on cos 5a
anonymous
  • anonymous
right
anonymous
  • anonymous
Sorry, The correct formula is 2 sinA cosB =sin(A+B) + sin(A-B) =sin(A+B) - sin(B-A)
anonymous
  • anonymous
=cos(pi/7) -cos(2pi/7)+ cos(3pi/7) =cos(pi/7)+cos(3pi/7)+cos(5pi/7) ={2sin(pi/7)cos(pi/7) + 2 sin(pi/7) cos(3pi/7) + 2 sin(pi/7) cos(5pi/7)}/2 sin(pi/7) ={sin(2pi/7) -sin(0) +sin(4pi/7) -sin(2pi/7) +sin(6pi/7) -sin(4pi/7)}/2sin(pi/7) ={sin(6pi/7)}/2sin(pi/7) ={sin(pi/7)}/2sin(pi/7) =1/2
anonymous
  • anonymous
sin(6pi/7) =sin(pi -pi/7) =sin(pi/7)
anonymous
  • anonymous
okay that makes so much sense i guess elementary steps we skipped
anonymous
  • anonymous
so we just had to play with\[\pi \pm \frac{\pi}{7}\]
anonymous
  • anonymous
yep... and one formula

Looking for something else?

Not the answer you are looking for? Search for more explanations.