ggrree
  • ggrree
i'm a bit rusty with my statistics/combinatorics. Can somebody show me the math behind this problem: suppose you have 4 letters: A, B ,C, and D. each letter can be uppercase or lowercase. How many different ways can you write the four letters if they must stay in the same order (ie, order doesn't matter) for example, some possibilities would be: ABCD, abcd, aBcD, ABCd, etc.
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

ggrree
  • ggrree
another example of what I mean. Imagine you have letters A, B, a, b. how many ways could you arrange them? in this example it's easy to count them out: AB, Ab, and ab. we only have 3 ways to write them. am I clear?
ggrree
  • ggrree
sorry, think I figured it out. the answer is 2^n, where n is the number of letters you have, since you've only got two choices (upper or lowercase) for each letter.

Looking for something else?

Not the answer you are looking for? Search for more explanations.