Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

6 friends (Andy, Bandy, Candy, Dandy, Endy and Fandy) are out to dinner. They will be seated in a circular table (with 6 seats). Andy and Bandy want to sit next to each other to talk about the Addition Principle, Bandy and Candy want to sit next to each other to talk about the Principle of Inclusion and Exclusion. How many ways are there to seat them? Clarification: Rotations are counted as the same seating arrangements, reflections are counted as different seating arrangements.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

  • hba
Circle (n-1)! Line n! Necklace or garland (n-1)!/2
720.....
proof: For the first seat, we have a choice of any of the 6 friends. After seating the first person, for the second seat, we have a choice of any of the remaining 5 friends. After seating the second person, for the third seat, we have a choice of any of the remaining 4 friends. After seating the third person, for the fourth seat, we have a choice of any of the remaining 3 friends. After seating the fourth person, for the fifth seat, we have a choice of any of the remaining 2 friends. After seating the fifth person, for the sixth seat, we have a choice of only 1 of the remaining friends. Hence, by the Rule of Product, there are 6*5*4*3*2*1=720 these 6 people. More generally, this problem is known as a Permutation. There are |dw:1358685675757:dw| ways to seat people in a row.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question