• anonymous
Write a polynomial function of minimum degree with real coefficients whose zeros include those listed. Write the polynomial in standard form. 3, -13, and 5 + 4i A. f(x) = x4 - 8x3 - 12x2 + 400x - 1599 B. f(x) = x4 - 200x2 + 800x - 1599 C. f(x) = x4 - 98x2 + 800x - 1599 D. f(x) = x4 - 8x3 + 12x2 - 400x + 1599
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • schrodinger
I got my questions answered at in under 10 minutes. Go to now for free help!
  • whpalmer4
We have roots of x = 3, -13, and 5+4i. We're going to need a conjugate to 5+4i also, because the complex roots come in pairs, so that will be 5-4i. Now the roots are simply the places where the factors of the polynomial = 0, so we can write our factored polynomial as \[f(x) = (x-3)(x+13)(x-5-4i)(x-5+4i) = 0\] Now it's just some pencil-pushing to multiply that expression out to get f(x) = x^4 + more terms. I would suggest multiplying the (x-5-4i) and (x-5+4i) terms first, as doing so will eliminate the terms containing i (remember that i^2 = -1).

Looking for something else?

Not the answer you are looking for? Search for more explanations.