Waynex
  • Waynex
On the supplemental problems for pset 8, question 4A-4, it says the force field has a magnitude of k/r. The "expression" for this force field has the scalar multiplier k/r^2. I don't understand the reasoning for r to become r^2 when k stays the same.
OCW Scholar - Multivariable Calculus
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Waynex
  • Waynex
<-y,x> has a magnitude of: \[y ^{2}+x ^{2}.\] And that magnitude is an equation for a circle. So we can represent that magnitude by \[r ^{2}.\] In order to scale that magnitude to the required magnitude of:\[\frac{ 1 }{ r },\] we need to multiply the vector <-y,x> by \[\frac{ 1 }{ r ^{2} }.\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.