anonymous
  • anonymous
Find the slope of the tangent at 6.5 for the following equation: D(t)=1.5cos[0.575(t-3.5)]+3.8
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
|dw:1358738532472:dw|
anonymous
  • anonymous
i can not use calculus to solve this question
anonymous
  • anonymous
|dw:1358738666002:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
i just dont understand what to do after i substitute
anonymous
  • anonymous
|dw:1358738728577:dw|
anonymous
  • anonymous
yeah after plunging everything in what do i do ?
anonymous
  • anonymous
dont plug in, use the rules derived from that
anonymous
  • anonymous
i dont remember :S
anonymous
  • anonymous
just use deriacative of cos
anonymous
  • anonymous
what do you mean by that ?
anonymous
  • anonymous
|dw:1358739365648:dw|
anonymous
  • anonymous
i am not allowed to use derivatives :$
siBerman
  • siBerman
The derivative is the slope of the tangent, so you're saying your not allowed use the answer to get the answer?
abb0t
  • abb0t
lol

Looking for something else?

Not the answer you are looking for? Search for more explanations.