Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1358806909531:dw|
area of circle

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

what are you trying to find
area of that
|dw:1358880151258:dw|Your picture is so sloppy :D Lemme see if this looks correct.
Theta is the angle. s is the letter we use for arc length.
Umm let's first find the radius. I think we're going to need that. Here is a helpful formula:\[\large s=r \theta\]We want to solve for r so let's divide both sides by \(\theta\).\[\large \frac{s}{\theta}=r\]
Our theta is given in degrees, so we'll need to convert it to radians.\[\large 30^o \left(\frac{\pi}{180^o}\right)=\frac{\pi}{6}\] So our radius is given by this,\[\large r=\frac{6\pi}{\left(\dfrac{\pi}{6}\right)}\] Which tells us that we have a radius of 36.
So now we need the area of this sector. Hmm. So it's a percentage of the area of a circle. So it will end up being the same formula we use for area of a circle, just with a fraction in front of it to show that we only want a fraction of that area.\[\large A=\left(C\right)\pi r^2\]From here we just need to find out what C is. You actually probably have a formula on a sheet somewhere, so I likely don't need to go into this much detail :) lol my bad. Anyway, our fraction will be the number of degrees we care about DIVIDED BY the total degrees in a circle.\[\large A=\left(\frac{30^o}{180^o}\right)\pi r^2\]The degree bubbles will cancel out, giving us a unit-less quantity (which is what we want).\[\large A=\left(\frac{1}{6}\right)\pi r^2\]
And we determined earlier that our radius was \(\large r=36\). Plugging this in gives us,\[\large A=\left(\frac{1}{6}\right)\pi (36)^2 \qquad = \qquad \left(\frac{1}{\cancel{6}}\right)\pi (6)^{\cancel{4}3}\]
\[\large A=216\pi\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question