Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

How do you solve x'+3x = t + e^-2t? Tried separation of variables, but didn't work

Differential Equations
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

its a linear equation ie, of the form \[x'+p(t)x=q(t)\] so find an integrating factor \[\mu(t)=e^{∫p(t)dt}\] then \[\big(x\mu(t)\big)'=q(t)\mu(t)\]
Here we have a typical linear first-order ordinary differential equation. The idea is that we observe \((\mu x)'=\mu x'+\mu'x\), so if we can make our left-hand side (\(x'+3x\)) look like \(\mu x'+\mu'x\), then we can integrate both sides to yield \(\mu x\) and therefore \(x\). We can do this using multiplication, so essentially we need to find some \(\mu\) such that \(\mu x'+3\mu x=\mu x'+\mu' x\), i.e. \(3\mu=\mu'\); it should be clear then that \(\mu=e^{3t}\). Multiply throughout to yield \(\mu x'+3\mu x=\mu t+\mu e^{-2t}\), which is equivalent to \((\mu x)'=\mu t+\mu e^{-2t}\). Integrate both sides and solve for \(x\) to yield \(x=\frac1\mu\int(\mu t+\mu e^{-2t})dt\). Substitute in \(\mu=e^{3t}\) and simplify.
Thank you guys so much.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Generally you can solve a linear first-order ODE of the form \(y'+Px=Q\) where \(P,Q\) are functions of \(x\) as follows: \(y=\frac1\mu\int\mu Q\ dx\) where \(\mu=e^{\int P\ dx}\)
Oops, I meant \(y'+Py=Q\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question