Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

An insulating sphere of radius R has spherically symmetric but radially nonuniform distribution of charge, with a charge density ρ(r) given by ρ(r)=ρ0[1−(5/4)(r/R)^2]. The constant ρ0 > 0 is the charge density at the center of the sphere. Note that the charge density ρ(r) is negative for 2/√5R < r

Physics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Use Gauss law to find value of field E(r).
You will need to use integral calculus to find charge at distance r
a)\[Q=\int\limits_{}^{} \rho dV\] \[dV=4 \pi r ^{2} dr\] Integrate from r=0 to r=R \[Q=4 \pi \rho 0 \int\limits_{0}^{R} (1-5/4(r/R)^{2})r ^{2}dr\] \[Q=4 \pi \rho0 R ^{3}/12\] Charge is positive b) As told by Vincent-Lyon, we use Gauss thm. here A Gaussian surface is a sphere of radius r and by spherical symmetry we take the value of field to be same at all points on the sphere and RADIALLY outwards. \[E \times 4\pi r ^{2} = \rho o(r ^{3}/3-r ^{5}/4R ^{2})/ \epsilon\] I found the charge inside the sphere the same way as in part a) Solve for E from here. PLEASE TELL ME IF I AM WRONG SOMEWHERE.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question