anonymous
  • anonymous
Can someone explain this to me? I already know the answer, but I don't understand why its the answer. Without solving the equation, determine the nature of the roots of x2 - 2x - 8 = 0. Two, real unequal roots Two, real equal roots No real roots
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

UnkleRhaukus
  • UnkleRhaukus
\[ax^2+bx+c=0\]consider the discriminant \[\Delta=b^2-4ac\]
UnkleRhaukus
  • UnkleRhaukus
the discriminant is part of the quadratic formula \[x=\frac{-b\pm\sqrt{\Delta}}{2a}\]
UnkleRhaukus
  • UnkleRhaukus
the quadratic formula takes plus and minus the square root of the discriminant, plus and minus a square root will have one value if the term in the square root is 0, two values if the term in the sqrt is positive, and no real values f the term in the square is negative

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

UnkleRhaukus
  • UnkleRhaukus
*if
anonymous
  • anonymous
Okay thanks, this is a mouthful but I understand lol.
UnkleRhaukus
  • UnkleRhaukus
**and no real values if the term in the square root is negative
UnkleRhaukus
  • UnkleRhaukus
yeah it is a complicate formula

Looking for something else?

Not the answer you are looking for? Search for more explanations.