Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Write the complex number in the form a + bi sqrt6(cos 315° + i sin 315°) PLEASE HELP

I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer


To see the expert answer you'll need to create a free account at Brainly

options are:
@jim_thompson5910 could you help with this last one :/ ? Im so sorry
what is the cosine of 315 degrees

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

what about the sine of 315 degrees
or -sqrt(2)/2
sorry about that youre right ./.... typo @jim_thompson5910
so this means that we have this so far \[\Large \sqrt{6}\left(\cos(315) + i\sin(315)\right)\] \[\Large \sqrt{6}\left(\frac{\sqrt{2}}{2} - i*\frac{\sqrt{2}}{2}\right)\]
so like (2-2i) sqrt3 @jim_thompson5910
how did you get that
I have no clue ... I messed up on the way Im thinking it was either A or C but Im leaning towards A
one sec
\[\Large \sqrt{6}\left(\cos(315) + i\sin(315)\right)\] \[\Large \sqrt{6}\left(\frac{\sqrt{2}}{2} - i*\frac{\sqrt{2}}{2}\right)\] \[\Large \sqrt{6}*\left(\frac{\sqrt{2}}{2}\right) - i*\sqrt{6}*\left(\frac{\sqrt{2}}{2}\right)\] \[\Large \frac{\sqrt{6}*\sqrt{2}}{2} - i*\frac{\sqrt{6}*\sqrt{2}}{2}\] \[\Large \frac{\sqrt{6*2}}{2} - i*\frac{\sqrt{6*2}}{2}\] \[\Large \frac{\sqrt{12}}{2} - i*\frac{\sqrt{12}}{2}\] \[\Large \frac{\sqrt{4*3}}{2} - i*\frac{\sqrt{4*3}}{2}\] \[\Large \frac{\sqrt{4}*\sqrt{3}}{2} - i*\frac{\sqrt{4}*\sqrt{3}}{2}\] \[\Large \frac{2*\sqrt{3}}{2} - i*\frac{2*\sqrt{3}}{2}\] \[\Large \sqrt{3} - i*\sqrt{3}\] \[\Large \sqrt{3} - \sqrt{3}*i\]
Thank you !!!

Not the answer you are looking for?

Search for more explanations.

Ask your own question