Here's the question you clicked on:
bleck19
Write the complex number in the form a + bi sqrt6(cos 315° + i sin 315°) PLEASE HELP
@jim_thompson5910 could you help with this last one :/ ? Im so sorry
what is the cosine of 315 degrees
what about the sine of 315 degrees
-1/sqrt2 @jim_thompson5910
sorry about that youre right ./.... typo @jim_thompson5910
so this means that we have this so far \[\Large \sqrt{6}\left(\cos(315) + i\sin(315)\right)\] \[\Large \sqrt{6}\left(\frac{\sqrt{2}}{2} - i*\frac{\sqrt{2}}{2}\right)\]
so like (2-2i) sqrt3 @jim_thompson5910
how did you get that
I have no clue ... I messed up on the way Im thinking it was either A or C but Im leaning towards A
\[\Large \sqrt{6}\left(\cos(315) + i\sin(315)\right)\] \[\Large \sqrt{6}\left(\frac{\sqrt{2}}{2} - i*\frac{\sqrt{2}}{2}\right)\] \[\Large \sqrt{6}*\left(\frac{\sqrt{2}}{2}\right) - i*\sqrt{6}*\left(\frac{\sqrt{2}}{2}\right)\] \[\Large \frac{\sqrt{6}*\sqrt{2}}{2} - i*\frac{\sqrt{6}*\sqrt{2}}{2}\] \[\Large \frac{\sqrt{6*2}}{2} - i*\frac{\sqrt{6*2}}{2}\] \[\Large \frac{\sqrt{12}}{2} - i*\frac{\sqrt{12}}{2}\] \[\Large \frac{\sqrt{4*3}}{2} - i*\frac{\sqrt{4*3}}{2}\] \[\Large \frac{\sqrt{4}*\sqrt{3}}{2} - i*\frac{\sqrt{4}*\sqrt{3}}{2}\] \[\Large \frac{2*\sqrt{3}}{2} - i*\frac{2*\sqrt{3}}{2}\] \[\Large \sqrt{3} - i*\sqrt{3}\] \[\Large \sqrt{3} - \sqrt{3}*i\]