Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

1. What is the first step in solving g-3/7 >5?(Points : 1) Add 3 to each side. Subtract 3 from each side. Divide each side by 7. Multiply each side by 7. 2. Write an inequality to represent the problem (1 pt.) and then solve the inequality by writing the pairs which solve it (1 pt.). Find all sets of two consecutive positive odd integers whose sum is less than or equal to 18. (Points : 2)

See more answers at
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer


To see the expert answer you'll need to create a free account at Brainly

is it \(\frac{g-3}{7}>5\) ?
Get rid of fractions immediately. ie Multiply by 7. Always your best option

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

@satellite73 It doesn't really matter anyway. It's a fraction so you should multiply by 7.
good point
actually try \(n+n+2\leq 18\)
this tell you \(2n+2\leq 18\) \[2n\leq 16\] \[n\leq 8\]so you don't have too many pairs of odd integers to write
You should probably set a lower bound: 0 \[0 < n + (n + 2) \le 18\]\[n \in \mathbb{Z}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question