anonymous
  • anonymous
Probability: Joe is a fool with probability 0.6, a thief with probability 0.7, and neither with probability 0.25. Determine the probability that he is a fool or a thief but not both.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
What is probability of Joe being not a thief. Similarly what is probability of not being a fool?
anonymous
  • anonymous
My answer is 0.2, since the probability of Joe being a thief, a fool, or both a thief and a fool is 1-0.25 = 0.75, and 0.75 = P(Joe is thief) + P(Joe is fool) - P(Joe is thief and fool) = 0.6 + 0.7 - x. x = 0.55, and (0.6 + 0.7) - 0.55 = 0.2, which is the probability of Joe being a thief or a fool but not both. Please confirm?
anonymous
  • anonymous
wait, I meant 0.75 - 0.55, not 0.6 + 0.7 - 0.55

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
because 0.75 is already thief, fool, or both, and 0.55 is only both, so if i subtract 0.55 from 0.75, I get thief OR fool, right?
anonymous
  • anonymous
Ok first off, when we 'add' probabilities so like P(THIS and THAT) we multiply P(THIS) and P(THAT) The way I would do it is get P(fool but not thief) + P(thief but not fool)
anonymous
  • anonymous
Sorry, for not being proper, but how would I get P(fool but not thief) and P(thief but not fool) if the event that Joe is a thief and Joe is a fool overlap?
anonymous
  • anonymous
OK to get P(fool not thief) get P(fool) = 0.6, P(not thief) = 1- P(thief) = 0.3 now multiply the two to get P(fool not thief). Do similarly for the other one. Then just add the two probabilities. Sorry but I have to go now.
anonymous
  • anonymous
It's okay, thank you for your help.

Looking for something else?

Not the answer you are looking for? Search for more explanations.