anonymous
  • anonymous
x^2-4x+3=0 solve each equation by completing the square
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
You'll need to move the three from the left hand side to the right hand side so that your equation looks like this: \[x^2-4x=-3\] You'll then need to find the perfect square for the left hand side. After finding the third term that completes the square for the left hand side. Set you equation equal to the right and solve by adding and subtracting the remaining term on the left. For example: Complete the square: \[x^2+6x-7=0\] Set the equation to find the perfect square: \[x^2+6x=7\] Find the perfect square and add the term to both sides: \[x^2+6x+9=7+9\] Simplify and set the perfect square factor: \[(x+3)^2=16\] Set to find x by square rooting both sides (remember to plus and minus on the right side): \[x+3=\pm4\] Isolate x. \[x=-3\pm4\] So then: \[x=-3+4 =-1\] \[x=-3-4=-7\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.