anonymous
  • anonymous
solve 3 sin^2 x - 2 = cos x
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
tyteen4a03
  • tyteen4a03
Remember that \(sin^2(x) + cos^2(x) = 1\).
anonymous
  • anonymous
yes...
anonymous
  • anonymous
Is 3 sin^2(x-2)=cos x

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

tyteen4a03
  • tyteen4a03
@ashwinjohn3 I believe it's 3sin^2(x) - 2.
anonymous
  • anonymous
yea its 3 sin^2 (x) - 2 = cos (x)
hartnn
  • hartnn
change sin^2 x to cos^2 x using \(\sin^2(x) + \cos^2(x) = 1\) then if you put cos^2 x = y, you'll get a quadratic in y.
anonymous
  • anonymous
ok... then,here \[\sin ^{2} x=1-\cos ^{2} x\] \[3 (1-\cos ^{2}x )-2=3-3 \cos ^{2}x -2=1-3\cos ^{2}x\]
anonymous
  • anonymous
thats what i get but then i cant figure out how to solve the angle :/
hartnn
  • hartnn
put cos x =y, then you get a quadratic in y..
anonymous
  • anonymous
But \[1=\cos ^{2}x+\sin ^{2} x\] =\[\sin ^{2}x+\cos ^{2}x-3\cos ^{2}x=\sin ^{2}x-2\cos ^{2}x\]
hartnn
  • hartnn
?
hartnn
  • hartnn
\(3 \sin^2 x - 2 = \cos x \\ 1-3\cos^2x = \cos x \\ 1-3y^2 =y. \\ 3y^2 +y-1=0 \) can you solve this quadratic ?
anonymous
  • anonymous
yeaaa but by using calculator, the answer is in decimal point. is there any other way i can calculate the angle?
hartnn
  • hartnn
you'll get same answer using any other method, that you got on calculator. whatever you got, equate it to y= ..., ... so, cos x = ... , .... then take cos^{-1} (or arccos) of those 2 values ("decimal values"), using calculator, and ou'll get 2 angles.
hartnn
  • hartnn
you might be getting, -0.767 and 0.434 then 2 angles will be cos^{-1}(-0.767) and cos^{-1}(0.434) calculate those using calculator.
anonymous
  • anonymous
hmmm okay thanks
hartnn
  • hartnn
welcome :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.