anonymous
  • anonymous
Can anyone answer this (revised) question: What is the probability of drawing 3 aces a) with replacement (and re-shuffling)? b) without replacement?
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

ZeHanz
  • ZeHanz
With replacement: every time the probability is 4/52=1/13, so three times in a row has probability 1/13³=1/2197.
anonymous
  • anonymous
so then how do I find the without replacement?
anonymous
  • anonymous
With replacement: every time the probability is 4/52=1/13, so three times in a row has probability 1/13³ . and for without replacement directly apply the probability theorems

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ZeHanz
  • ZeHanz
Without replacement: You can look at this in two ways: a. drawing them on by one b. drawing all three at the same time a. the first ace has a probability of 4/52 (=1/3). second: 3/51, third: 2/51, so three in a row: (4*3*2)/(52*51*50)=1/5525 b. (you need to know about permutations and combinations) the probability is : \[p(3 \hspace{1 mm} aces)=\frac{ no\hspace{1 mm}of\hspace{1 mm}combinations\hspace{1 mm} of\hspace{1 mm} 3 \hspace{1 mm}out\hspace{1 mm} of \hspace{1 mm}4 }{ total\hspace{1 mm} no\hspace{1 mm} of\hspace{1 mm} combinations\hspace{1 mm} of\hspace{1 mm} 3 \hspace{1 mm}out\hspace{1 mm} of\hspace{1 mm} 52 } \] \[=\frac{ \left(\begin{matrix}4 \\ 3\end{matrix}\right) }{ \left(\begin{matrix}52 \\ 3\end{matrix}\right) }=\frac{ \frac{ 4! }{ 3!1! } }{ \frac{ 52! }{ 49!3! } }=\frac{ \frac{ 4\cdot3\cdot2\cdot1 }{ 3\cdot2\cdot1\cdot1 } }{ \frac{ 52\cdot51\cdot50 }{ 3\cdot2\cdot1 } }=\frac{ 4\cdot3\cdot2 }{ 52\cdot51\cdot50 }=...=\frac{ 1 }{ 5525 }\]
ZeHanz
  • ZeHanz
Luckily, both methods yield the same result ;)
anonymous
  • anonymous
lol
anonymous
  • anonymous
thank you both.. I was pretty lost. Stats just not my cup of tea! Not today anyhow.
ZeHanz
  • ZeHanz
YW!

Looking for something else?

Not the answer you are looking for? Search for more explanations.