Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Can anyone answer this (revised) question: What is the probability of drawing 3 aces a) with replacement (and re-shuffling)? b) without replacement?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

With replacement: every time the probability is 4/52=1/13, so three times in a row has probability 1/13³=1/2197.
so then how do I find the without replacement?
With replacement: every time the probability is 4/52=1/13, so three times in a row has probability 1/13³ . and for without replacement directly apply the probability theorems

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Without replacement: You can look at this in two ways: a. drawing them on by one b. drawing all three at the same time a. the first ace has a probability of 4/52 (=1/3). second: 3/51, third: 2/51, so three in a row: (4*3*2)/(52*51*50)=1/5525 b. (you need to know about permutations and combinations) the probability is : \[p(3 \hspace{1 mm} aces)=\frac{ no\hspace{1 mm}of\hspace{1 mm}combinations\hspace{1 mm} of\hspace{1 mm} 3 \hspace{1 mm}out\hspace{1 mm} of \hspace{1 mm}4 }{ total\hspace{1 mm} no\hspace{1 mm} of\hspace{1 mm} combinations\hspace{1 mm} of\hspace{1 mm} 3 \hspace{1 mm}out\hspace{1 mm} of\hspace{1 mm} 52 } \] \[=\frac{ \left(\begin{matrix}4 \\ 3\end{matrix}\right) }{ \left(\begin{matrix}52 \\ 3\end{matrix}\right) }=\frac{ \frac{ 4! }{ 3!1! } }{ \frac{ 52! }{ 49!3! } }=\frac{ \frac{ 4\cdot3\cdot2\cdot1 }{ 3\cdot2\cdot1\cdot1 } }{ \frac{ 52\cdot51\cdot50 }{ 3\cdot2\cdot1 } }=\frac{ 4\cdot3\cdot2 }{ 52\cdot51\cdot50 }=...=\frac{ 1 }{ 5525 }\]
Luckily, both methods yield the same result ;)
lol
thank you both.. I was pretty lost. Stats just not my cup of tea! Not today anyhow.
YW!

Not the answer you are looking for?

Search for more explanations.

Ask your own question