anonymous
  • anonymous
What is the exact value of cos((19π)/(12))
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
0.2588190451 ;)
anonymous
  • anonymous
thats wrong..
ZeHanz
  • ZeHanz
Try this:\[\cos \frac{ 19 \pi }{ 12 }=\cos \left( \frac{ 16\pi }{ 12 }+\frac{ 3\pi }{ 12 } \right)\] Now simplify the fractions. You wil get numbers we all know and love ;) Then use the formula for cos(a+b).

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
nope that aint wrong ;)
ZeHanz
  • ZeHanz
@itsmylife: it's wrong because you left out infinitely many decimals... It is just a (good) approximation.
anonymous
  • anonymous
\[\frac{ \sqrt{6}+\sqrt{2} }{ 4 }\]
anonymous
  • anonymous
is that correct?
ZeHanz
  • ZeHanz
I got \[\frac{ \sqrt{6}-\sqrt{2} }{ 4 }\]
anonymous
  • anonymous
well she asked me exact value i used calculator and gave her what she wanted ;)
anonymous
  • anonymous
can you explain ? & @itsmylife but thats approximent. exact value is usually always fractions.
anonymous
  • anonymous
alright m gonna give ya fraction ;)
anonymous
  • anonymous
647/2500 ;) this is way too exact
ZeHanz
  • ZeHanz
cos(a+b)=cos(a)cos(b)-sin(a)sin(b) Here we have \[a=\frac{ 16\pi }{ 12 }=\frac{ 4 }{ 3 }\pi\]and \[b=\frac{ 3\pi }{ 12 }=\frac{ 1 }{ 4 }\pi\] Substitute these values:\[\cos \frac{ 4 }{ 3 }\pi \cos \frac{ 1 }{ 4 }\pi-\sin \frac{ 4 }{ 3 }\pi \sin \frac{ 1 }{ 4 }\pi=\]\[-\frac{ 1 }{ 2 }\cdot \frac{ 1 }{ 2 }\sqrt{2}--\frac{ 1 }{ 2 }\sqrt{3}\cdot \frac{ 1 }{ 2 }\sqrt{2}=\frac{ 1 }{ 4 }\sqrt{6}-\frac{ 1 }{ 4 }\sqrt{2}=\frac{ \sqrt{6}-\sqrt{2} }{ 4 }\]
ZeHanz
  • ZeHanz
@Lauren01: seems like you missed a little "-"sign somewhere...

Looking for something else?

Not the answer you are looking for? Search for more explanations.