Calculus!

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

if \[f(x)=\frac{ 1 }{ 3 }x ^{3}-4x ^{2}+12x-5\] and the domain is the set of all x such that \[0\le x \le9\], then the absolut emaximum value of the function f occurs when x is.....
my teacher gave me the answer, and the answer is 9.
and haha yes i figured out how to do the last one :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

So we're closed within a small interval. To find max and min, we'll do a couple things. We'll take the derivative of \(f\) to find critical points. Then we simply plug those points into the original function to see which gives us the biggest answer. But we ALSO have to plug in the END POINTS x=0 and x=9, and compare those values as well. The biggest output will be our answer.
ah , ok. because I found the derivative, and 9 was not one of the values i got when i set the derivative equal to zero and solved for x. but thank you! I didnt know that you have to include the endpoints :p
ya c; good times.

Not the answer you are looking for?

Search for more explanations.

Ask your own question