UnkleRhaukus
  • UnkleRhaukus
Show that \(\operatorname{erc}(x)\) satisfies the differential equation \[\frac{\mathrm dy}{\mathrm dx}=2xy-\frac2{\sqrt \pi}\] With \(y=1\) when \(x=0\)
Differential Equations
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
UnkleRhaukus
  • UnkleRhaukus
\[ \newcommand\dd[1]{\,\mathrm d#1} % infinitesimal \newcommand\intl[4]{\int\limits_{#1}^{#2}{#3}{\dd #4}} % integral _{a}^{b}{f(x)}\dd x \newcommand\de[2]{\frac{\mathrm d #1}{\mathrm d#2}} % first order derivative \newcommand\pa[2]{\frac{\partial #1}{\partial #2}} % partial derivative \newcommand\erf[1]{\operatorname {erf}\left(#1\right)} % Error function erf(x) \newcommand\erfint[1]{\frac2{\sqrt \pi}\intl{0}{#1}{e^{-u^2}}{u}} % Error function integral erfc(x) \newcommand\erfc[1]{\operatorname {erfc}\left(#1\right)} % Complimentary Error function Compliment (x) \newcommand\erfcint[1]{\frac2{\sqrt \pi}\intl{#1}{\infty}{e^{-u^2}}u} % Complimentary Error function integral (x) \newcommand\erc[1]{\operatorname{erc}\left(#1\right)} % Normalised Error function (x) \newcommand\ercint[1]{e^{#1^2}\erfcint{#1}} % Normalised Error function integral (x) \begin{equation*} \de yx=2xy-\frac2{\sqrt \pi},\qquad\qquad y(0)=1\\ \end{equation*}\]\[ \begin{align*} y(x)&=\erc x\\ &=e^{x^2}\erfc x\\ &=\ercint x\\ \\ y(0)&=\erfcint 0\\ &=1\\ \\ \de yx&=\frac2{\sqrt \pi}\left[\de{\left(e^{x^2}\right)}x\intl x\infty{e^{-u^2}}u+e^{x^2}\intl x\infty {\pa {\left(e^{-u^2}\right)}u}u\right]\\ &=\frac2{\sqrt \pi}\left[2xe^{x^2}\intl x\infty{e^{-u^2}}u+e^{x^2}\left.e^{-u^2}\right|_x^\infty\right]\\ &=\frac2{\sqrt \pi}\left[2xe^{x^2}\intl x\infty{e^{-u^2}}u-e^{x^2}e^{-x^2}\right]\\ &=2xe^{x^2}\frac{2}{\sqrt \pi}\intl x\infty{e^{-u^2}}u-\frac2{\sqrt \pi}\\ &=2xy-\frac2{\sqrt \pi}\\ \end{align*} \]
UnkleRhaukus
  • UnkleRhaukus
y/n ?
Goten77
  • Goten77
im sorry but man... im good at math but i only know stuff up to calculus 2.... anything after i havent taken yet.... best of luck

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

chihiroasleaf
  • chihiroasleaf
what is erc(x) ?
UnkleRhaukus
  • UnkleRhaukus
my book defines:: ___ The error function:\[\operatorname {erf}(x)=\frac{2}{\sqrt \pi}\int\limits_0^xe^{-u^2}\mathrm du\]___ The complementary error function:\[\operatorname{erfc}(x)=1-\operatorname {erf}(x)\] ___\[\operatorname {erc}(x)=e^{x^2}\operatorname{erfc(x)}\]
UnkleRhaukus
  • UnkleRhaukus
i guess it is the normalised complementary error function
chihiroasleaf
  • chihiroasleaf
ahh I see..... what's your problem? I think you've done it..
UnkleRhaukus
  • UnkleRhaukus
yay
UnkleRhaukus
  • UnkleRhaukus
so i haven't made any errors?
chihiroasleaf
  • chihiroasleaf
It seems correct..
sirm3d
  • sirm3d
\[\Large {y=\operatorname{erc}(x)=e^{x^2}\left[1-\frac{2}{\sqrt \pi}\int_0^xe^{-u^2}\;\mathrm du\right]\\\frac{dy}{dx}=2xe^{x^2}\left[1-\frac{2}{\sqrt \pi}\int_0^xe^{-u^2}\;\mathrm du\right]+e^{x^2}\left[-\frac{2}{\sqrt \pi}e^{-x^2}\right]\\=2xy-\frac{2}{\sqrt \pi}}\]
sirm3d
  • sirm3d
it's shorter if you apply the fundamental theorem of calculus
UnkleRhaukus
  • UnkleRhaukus
i though i did
sirm3d
  • sirm3d
you used the derivative "under the integral sign", and i appreciate looking at a different solution. i see the function \(\operatorname{efc}(x)\) as a product, so i sued the product rule for derivative. in the process, i also saw the fundamental theorem of calculus\[\frac{\mathrm d}{\mathrm dx} \int_a^x f(u)\;\mathrm du=f(x)\]
UnkleRhaukus
  • UnkleRhaukus
the only difference i can see your method is that you used erf where i used erfc
UnkleRhaukus
  • UnkleRhaukus
I can't say I understand the difference between derivative "under the integral sign" & the fundamental theorem of calculus

Looking for something else?

Not the answer you are looking for? Search for more explanations.