Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Show that \(\operatorname{erc}(x)\) satisfies the differential equation \[\frac{\mathrm dy}{\mathrm dx}=2xy-\frac2{\sqrt \pi}\] With \(y=1\) when \(x=0\)

Differential Equations
See more answers at
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer


To see the expert answer you'll need to create a free account at Brainly

\[ \newcommand\dd[1]{\,\mathrm d#1} % infinitesimal \newcommand\intl[4]{\int\limits_{#1}^{#2}{#3}{\dd #4}} % integral _{a}^{b}{f(x)}\dd x \newcommand\de[2]{\frac{\mathrm d #1}{\mathrm d#2}} % first order derivative \newcommand\pa[2]{\frac{\partial #1}{\partial #2}} % partial derivative \newcommand\erf[1]{\operatorname {erf}\left(#1\right)} % Error function erf(x) \newcommand\erfint[1]{\frac2{\sqrt \pi}\intl{0}{#1}{e^{-u^2}}{u}} % Error function integral erfc(x) \newcommand\erfc[1]{\operatorname {erfc}\left(#1\right)} % Complimentary Error function Compliment (x) \newcommand\erfcint[1]{\frac2{\sqrt \pi}\intl{#1}{\infty}{e^{-u^2}}u} % Complimentary Error function integral (x) \newcommand\erc[1]{\operatorname{erc}\left(#1\right)} % Normalised Error function (x) \newcommand\ercint[1]{e^{#1^2}\erfcint{#1}} % Normalised Error function integral (x) \begin{equation*} \de yx=2xy-\frac2{\sqrt \pi},\qquad\qquad y(0)=1\\ \end{equation*}\]\[ \begin{align*} y(x)&=\erc x\\ &=e^{x^2}\erfc x\\ &=\ercint x\\ \\ y(0)&=\erfcint 0\\ &=1\\ \\ \de yx&=\frac2{\sqrt \pi}\left[\de{\left(e^{x^2}\right)}x\intl x\infty{e^{-u^2}}u+e^{x^2}\intl x\infty {\pa {\left(e^{-u^2}\right)}u}u\right]\\ &=\frac2{\sqrt \pi}\left[2xe^{x^2}\intl x\infty{e^{-u^2}}u+e^{x^2}\left.e^{-u^2}\right|_x^\infty\right]\\ &=\frac2{\sqrt \pi}\left[2xe^{x^2}\intl x\infty{e^{-u^2}}u-e^{x^2}e^{-x^2}\right]\\ &=2xe^{x^2}\frac{2}{\sqrt \pi}\intl x\infty{e^{-u^2}}u-\frac2{\sqrt \pi}\\ &=2xy-\frac2{\sqrt \pi}\\ \end{align*} \]
y/n ?
im sorry but man... im good at math but i only know stuff up to calculus 2.... anything after i havent taken yet.... best of luck

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

what is erc(x) ?
my book defines:: ___ The error function:\[\operatorname {erf}(x)=\frac{2}{\sqrt \pi}\int\limits_0^xe^{-u^2}\mathrm du\]___ The complementary error function:\[\operatorname{erfc}(x)=1-\operatorname {erf}(x)\] ___\[\operatorname {erc}(x)=e^{x^2}\operatorname{erfc(x)}\]
i guess it is the normalised complementary error function
ahh I see..... what's your problem? I think you've done it..
so i haven't made any errors?
It seems correct..
\[\Large {y=\operatorname{erc}(x)=e^{x^2}\left[1-\frac{2}{\sqrt \pi}\int_0^xe^{-u^2}\;\mathrm du\right]\\\frac{dy}{dx}=2xe^{x^2}\left[1-\frac{2}{\sqrt \pi}\int_0^xe^{-u^2}\;\mathrm du\right]+e^{x^2}\left[-\frac{2}{\sqrt \pi}e^{-x^2}\right]\\=2xy-\frac{2}{\sqrt \pi}}\]
it's shorter if you apply the fundamental theorem of calculus
i though i did
you used the derivative "under the integral sign", and i appreciate looking at a different solution. i see the function \(\operatorname{efc}(x)\) as a product, so i sued the product rule for derivative. in the process, i also saw the fundamental theorem of calculus\[\frac{\mathrm d}{\mathrm dx} \int_a^x f(u)\;\mathrm du=f(x)\]
the only difference i can see your method is that you used erf where i used erfc
I can't say I understand the difference between derivative "under the integral sign" & the fundamental theorem of calculus

Not the answer you are looking for?

Search for more explanations.

Ask your own question