anonymous
  • anonymous
solve by completing the square: 4x^2-7x=3
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
do u know the method of completing the square first............?
anonymous
  • anonymous
firstly make the coefficient of first term ie,x^2 unity
Goten77
  • Goten77
|dw:1359101474085:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Goten77
  • Goten77
if all us fails.. u can even use the quadractic formula
anonymous
  • anonymous
NO, the question says to complete the square. @Goten77 if you're good at maths then you should know to never make a rookie mistake of not obeying to the question.
anonymous
  • anonymous
\[4x^2-7x=3\] Divide both sides by 4! \[x^2-\frac{7}{4}x=\frac{3}{4}\] Use this property of completing the square. \[x^2-bx=c\] \[(x-\frac{b}{2})^2=c+(\frac{b}{2})^2\] SO.... \[(x-\frac{ 7 }{ 8 })^2=\frac{ 3 }{ 4 }+\frac{ 49 }{ 64 }\] \[(x-\frac{ 7 }{ 8 })^2=\frac{ 97 }{ 64 }\] Square root both sides while BEING CAUTIOUS that there must be a negative value as well as a positive. \[x-\frac{ 7 }{ 8 }=\frac{ \pm \sqrt{97} }{ 8 }\] \[x=\frac{ \pm \sqrt{97} }{ 8 }+\frac{ 7 }{ 8 }\] \[x=\frac{ 7\pm \sqrt{97} }{ 8 }\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.