anonymous
  • anonymous
find the integral of cot^3xcsc^3xdx
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
i got -csc^5x/5 + csc^3x/3 + C can someone pls tell me if im doing it right pls let me know thanks
anonymous
  • anonymous
you want integral of cot^3(x)*csc^3(x) dx right?
anonymous
  • anonymous
is this (cotx)^3*(cscx)^3 dx?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yep
anonymous
  • anonymous
sorry about that should have made it more clear
anonymous
  • anonymous
Take the integral: integral cot^3(x) csc^3(x) dx For the integrand cot^3(x) csc^3(x), use the trigonometric identity cot^2(x) = csc^2(x)-1: = integral cot(x) csc^3(x) (csc^2(x)-1) dx For the integrand cot(x) csc^3(x) (csc^2(x)-1), substitute u = csc(x) and du = -(cot(x) csc(x)) dx: = - integral u^2 (u^2-1) du Expanding the integrand u^2 (u^2-1) gives u^4-u^2: = - integral (u^4-u^2) du Integrate the sum term by term and factor out constants: = integral u^2 du- integral u^4 du The integral of u^4 is u^5/5: = integral u^2 du-u^5/5 The integral of u^2 is u^3/3: = u^3/3-u^5/5+constant Substitute back for u = csc(x): = (csc^3(x))/3-(csc^5(x))/5+constant Which is equal to: Answer: | | = -1/30 ((5 cos(2 x)+1) csc^5(x))+constant
anonymous
  • anonymous
so it's just a simple substitution

Looking for something else?

Not the answer you are looking for? Search for more explanations.