Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

find the integral of cot^3xcsc^3xdx

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

i got -csc^5x/5 + csc^3x/3 + C can someone pls tell me if im doing it right pls let me know thanks
you want integral of cot^3(x)*csc^3(x) dx right?
is this (cotx)^3*(cscx)^3 dx?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yep
sorry about that should have made it more clear
Take the integral: integral cot^3(x) csc^3(x) dx For the integrand cot^3(x) csc^3(x), use the trigonometric identity cot^2(x) = csc^2(x)-1: = integral cot(x) csc^3(x) (csc^2(x)-1) dx For the integrand cot(x) csc^3(x) (csc^2(x)-1), substitute u = csc(x) and du = -(cot(x) csc(x)) dx: = - integral u^2 (u^2-1) du Expanding the integrand u^2 (u^2-1) gives u^4-u^2: = - integral (u^4-u^2) du Integrate the sum term by term and factor out constants: = integral u^2 du- integral u^4 du The integral of u^4 is u^5/5: = integral u^2 du-u^5/5 The integral of u^2 is u^3/3: = u^3/3-u^5/5+constant Substitute back for u = csc(x): = (csc^3(x))/3-(csc^5(x))/5+constant Which is equal to: Answer: | | = -1/30 ((5 cos(2 x)+1) csc^5(x))+constant
so it's just a simple substitution

Not the answer you are looking for?

Search for more explanations.

Ask your own question