Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

A tutorial for @RolyPoly. Linear independence of the vectors. Check if the vectors \(\vec{v_1}=(1,0,1), \vec{v_2}=(2,1,3), \vec{v_3}=(1,1,2)\) are linearly independent?

Linear Algebra
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
\[\left[\begin{matrix}1 & 2 & | & 1 \\ 0 & 1 &|& 1 \\ 1&3&|&2\end{matrix}\right]\]\[->\left[\begin{matrix}1 & 2 & | & 1 \\ 0 & 1 &|& 1\\ 0&1&|&1\end{matrix}\right]\]\[->\left[\begin{matrix}1 & 2 & | & 1 \\ 0 & 1 &|& 1\\ 0&0&|&0\end{matrix}\right]\] => Linearly dependent :|
We will use a definition of the linear dependence. Start from making the linear combination of \(\vec{v_1},\vec{v_2},\vec{v_3}\): \(c_1\cdot\vec{v_1}+c_2\cdot\vec{v_2}+c_3\cdot\vec{v_3}\) And we will try to check if there are such \(c_1,c_2,c_3\) to make this combination equal to zero. \(c_1\cdot\left(\begin{matrix}1\\0\\1\end{matrix}\right)+c_2\cdot\left(\begin{matrix}2\\1\\3\end{matrix}\right)+c_3\cdot\left(\begin{matrix}1\\1\\2\end{matrix}\right)=\left(\begin{matrix}0\\0\\0\end{matrix}\right)\). That means that we have a system of the linear equation with the right part equal to zero: \(A\vec{x}=0\) Where \(A=\left(\begin{matrix} 1&2&1\\ 0&1&1\\ 1&3&2 \end{matrix}\right), \vec{x}=\left(\begin{matrix}c_1\\c_2\\c_3\end{matrix}\right)\). Using Cramer's rule we compute the determinant: \(\left|\begin{matrix} 1&2&1\\ 0&1&1\\ 1&3&2 \end{matrix}\right|=0\) We have that the right side of the matrix equation \(A\vec{x}=0\) is equal to zero and the determinant of the matrix \(A\) is equal to zero. That means that there is non-trivial solution for \(\vec{x}\). We found that there are so \(c_1,c_2,c_3\) not all are equal to zero. According to the definition of the linear independence of the vector, we can say that \(\vec{v_1},\vec{v_2},\vec{v_3}\) are linearly dependent.
We have that the right side of the matrix equation \(A\vec{x} =0\) is equal to zero and the determinant of the matrix A is equal to zero. ^ Okay. That means that there is non-trivial solution for \(\vec{x}\) ^ Not okay.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question