Quantcast

A community for students. Sign up today!

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

klimenkov

  • one year ago

A tutorial for @RolyPoly. Linear independence of the vectors. Check if the vectors \(\vec{v_1}=(1,0,1), \vec{v_2}=(2,1,3), \vec{v_3}=(1,1,2)\) are linearly independent?

  • This Question is Closed
  1. RolyPoly
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\left[\begin{matrix}1 & 2 & | & 1 \\ 0 & 1 &|& 1 \\ 1&3&|&2\end{matrix}\right]\]\[->\left[\begin{matrix}1 & 2 & | & 1 \\ 0 & 1 &|& 1\\ 0&1&|&1\end{matrix}\right]\]\[->\left[\begin{matrix}1 & 2 & | & 1 \\ 0 & 1 &|& 1\\ 0&0&|&0\end{matrix}\right]\] => Linearly dependent :|

  2. klimenkov
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    We will use a definition of the linear dependence. Start from making the linear combination of \(\vec{v_1},\vec{v_2},\vec{v_3}\): \(c_1\cdot\vec{v_1}+c_2\cdot\vec{v_2}+c_3\cdot\vec{v_3}\) And we will try to check if there are such \(c_1,c_2,c_3\) to make this combination equal to zero. \(c_1\cdot\left(\begin{matrix}1\\0\\1\end{matrix}\right)+c_2\cdot\left(\begin{matrix}2\\1\\3\end{matrix}\right)+c_3\cdot\left(\begin{matrix}1\\1\\2\end{matrix}\right)=\left(\begin{matrix}0\\0\\0\end{matrix}\right)\). That means that we have a system of the linear equation with the right part equal to zero: \(A\vec{x}=0\) Where \(A=\left(\begin{matrix} 1&2&1\\ 0&1&1\\ 1&3&2 \end{matrix}\right), \vec{x}=\left(\begin{matrix}c_1\\c_2\\c_3\end{matrix}\right)\). Using Cramer's rule we compute the determinant: \(\left|\begin{matrix} 1&2&1\\ 0&1&1\\ 1&3&2 \end{matrix}\right|=0\) We have that the right side of the matrix equation \(A\vec{x}=0\) is equal to zero and the determinant of the matrix \(A\) is equal to zero. That means that there is non-trivial solution for \(\vec{x}\). We found that there are so \(c_1,c_2,c_3\) not all are equal to zero. According to the definition of the linear independence of the vector, we can say that \(\vec{v_1},\vec{v_2},\vec{v_3}\) are linearly dependent.

  3. RolyPoly
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    We have that the right side of the matrix equation \(A\vec{x} =0\) is equal to zero and the determinant of the matrix A is equal to zero. ^ Okay. That means that there is non-trivial solution for \(\vec{x}\) ^ Not okay.

  4. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Ask a Question
Find more explanations on OpenStudy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.