anonymous
  • anonymous
Find the angle between the given vectors to the nearest tenth of a degree. u = <8, 7>, v = <9, 7>
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

ZeHanz
  • ZeHanz
You could use the formula:\[\cos \theta=\frac{ \vec u \cdot \vec v}{ |\vec u||\vec v| }\]assuming you are familiar with the dot product of vectors.
anonymous
  • anonymous
here it is on mathematica.
1 Attachment
anonymous
  • anonymous
that wouldnt let me open it @Sshmoo

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
im just learning it so im still so comfused
anonymous
  • anonymous
i'll try converting it to a different file, all it is is a graph of the vectors and a dot product. It just looks shinier.
anonymous
  • anonymous
ohok
anonymous
  • anonymous
here it is in PDF
1 Attachment
anonymous
  • anonymous
okk hm so
anonymous
  • anonymous
so which of these would the answer be ? -8.3° 1.7° 3.3° 13.3°
ZeHanz
  • ZeHanz
If you calculate cos theta, you get: \[\cos \theta=\frac{ 8 \cdot 9 + 7 \cdot 7 }{ \sqrt{8^2+7^2}\sqrt{9^2+7^2} }=\frac{ 72+49 }{\sqrt{113}\sqrt{130} }=\frac{ 121 }{ \sqrt{113} \sqrt{130}}\approx 0.99833\]Now take the inverse cosine (cos^-1 on your calculator) to see the answer.
anonymous
  • anonymous
THANK YOU!
ZeHanz
  • ZeHanz
yw!

Looking for something else?

Not the answer you are looking for? Search for more explanations.