geerky42
  • geerky42
How many numbers in the form \(a^4\), where \(a \in \mathbb{Z}^+\) divide \(3! \times 4! \times 7!\) ?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
i don't think there are too many since you need primes to the power of 4
anonymous
  • anonymous
included in \(3!4!7!\) is \(2^7\) and \(3^4\) all other primes are to lower powers
anonymous
  • anonymous
i am not certain but on the basis of prime factorization i only see \[2^4,3^4,(2\times 3)^4\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
oops i miscounted!! it is \(2^8\) and \(3^4\)
anonymous
  • anonymous
so maybe there are 4 all together, \[2^4, 3^4, (2^2)^4,(2\times 3)^4, (2^2\times 3)^4\]
anonymous
  • anonymous
well that is actually 5, not 4

Looking for something else?

Not the answer you are looking for? Search for more explanations.