ksaimouli
  • ksaimouli
find the arc lenght x=(y^3/3)((x^2)+2)^3/2 from x=0 to x=3
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

ksaimouli
  • ksaimouli
ksaimouli
  • ksaimouli
\[x=\frac{ y^3 }{ 6 }+\frac{ 1 }{ 2y }\]
ksaimouli
  • ksaimouli
\[\frac{ dx}{ dy }=\frac{ y^2 }{ 2 }-\frac{ 1 }{ y^2}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ksaimouli
  • ksaimouli
\[\int\limits_{1}^{2}\sqrt{1+((\frac{ y^2 }{ 2 })-\frac{ 1 }{ y^2 })^2} dy\]
zepdrix
  • zepdrix
Woops the 2 should still be there on the second term. A -1 came down from the power rule.
ksaimouli
  • ksaimouli
u mean for 1/2y
zepdrix
  • zepdrix
ya
zepdrix
  • zepdrix
The problem at the very top seems to be different than the one you formatted below it, I'm confused..
ksaimouli
  • ksaimouli
when i take derivative using quotient rule i got -1/2y^2
zepdrix
  • zepdrix
Yes that's the correct derivative. Don't use quotient rule, easier to use power rule.\[\large \left(\frac{1}{2y}\right)'\quad = \quad \left(\frac{1}{2}y^{-1}\right)' \quad = \quad -\frac{1}{2}y^{-2}\]
zepdrix
  • zepdrix
Do you have 2 separate problems listed? This is rather confusing....

Looking for something else?

Not the answer you are looking for? Search for more explanations.