MoonlitFate
  • MoonlitFate
Find the limit: see the attachment. Please, don't throw around the word derivative, just yet.
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
MoonlitFate
  • MoonlitFate
MoonlitFate
  • MoonlitFate
I can do the first step, which I think is to rationalize the numerator, but then I get stuck.
anonymous
  • anonymous
rationalize the numerator by multiplying top and bottom by the conjugate of the numerator when you do, the \(\Delta x\) will cancel

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

MoonlitFate
  • MoonlitFate
Then I get: \[\frac{ 1 }{ \sqrt{x + \Delta x } + \sqrt{x}} \]
anonymous
  • anonymous
\[\lim_{h\to 0}\frac{\sqrt{x+h}-\sqrt{x}}{h}\times \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}\] \[=\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})}\] \[=\frac{h}{\sqrt{x+h}+\sqrt{x}}\] \[=\frac{1}{\sqrt{x+h}+\sqrt{x}}\]
anonymous
  • anonymous
lol i was writing instead of looking at what you wrote
anonymous
  • anonymous
now take the limit by replacing \(\Delta x\) by \(0\) and get \[\frac{1}{2\sqrt{x}}\]
anonymous
  • anonymous
which happens to be the "DERIVATIVE" (yeah, i know) of \(\sqrt{x}\) a good one to memorize
MoonlitFate
  • MoonlitFate
Wow. Funny how the small steps confuse me, yet, I can do most of the "hard" things...
anonymous
  • anonymous
true, you did all the hard work replacing \(\Delta x\) by zero is rather simple

Looking for something else?

Not the answer you are looking for? Search for more explanations.