anonymous
  • anonymous
Verify (1/sinx+1) + (1/cscx+1) = 1
Precalculus
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

zepdrix
  • zepdrix
\[\large \frac{1}{1+\sin x}+\frac{1}{\csc x+1}\] Let's do some manipulation. We're going to take advantage of two of the three basic square identities that you first learn in trig.\[\large \color{royalblue}{\sin^2x+\cos^2x=1 \qquad \qquad \cot^2x+1=\csc^2x}\] In our problem, let's multiply the first term by the `conjugate` of the bottom.\[\large \color{orangered}{\frac{1-\sin x}{1-\sin x}}\frac{1}{1+\sin x}+\frac{1}{\csc x+1}\color{orangered}{\frac{\csc x-1}{\csc x-1}}\] When we multiply conjugates, we end up with the `Difference of squares` on the bottoms.\[\large \frac{1-\sin x}{1-\sin^2x}+\frac{\csc x-1}{\csc^2x-1}\]
zepdrix
  • zepdrix
Now we can use our blue identities,\[\large \color{royalblue}{\cos^2x=1-\sin^2x \qquad \qquad \cot^2x=\csc^2x-1}\] Using these identities gives us,\[\large \frac{1-\sin x}{\color{royalblue}{1-\sin^2x}}+\frac{\csc x-1}{\color{royalblue}{\csc^2x-1}} \qquad \rightarrow \qquad \frac{1-\sin x}{\color{royalblue}{\cos^2x}}+\frac{\csc x-1}{\color{royalblue}{\cot^2x}}\]
zepdrix
  • zepdrix
Recalling that, \[\large \color{brown}{\cot^2x=\frac{\cos^2x}{\sin^2x}}\]Gives us,\[\large \frac{1-\sin x}{\cos^2x}+\frac{\csc x-1}{\color{brown}{\dfrac{\cos^2x}{\sin^2x}}}\]Now notice that we're dividing by a fraction, which we can rewrite as multiplication if we `flip` the bottom fraction.\[\large \frac{1-\sin x}{\cos^2x}+\frac{\color{brown}{\sin^2x}(\csc x-1)}{\color{brown}{\cos^2x}}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

zepdrix
  • zepdrix
Then distribute the sin^2x to each term in the brackets. There's only a little bit of simplification to do after that. Lemme know if you're still stuck on something.
anonymous
  • anonymous
It took a while to read that since most of the formatting didn't work, but I think I've got it now. Thanks c:
zepdrix
  • zepdrix
Formatting didn't work? :c If you refresh the page it usually fixes it. That stinks :d
anonymous
  • anonymous
I feel that the faster way of doing it without any identities is this. \[\csc x=\frac{1}{\sin x}\] \[\frac{ 1 }{ \sin x+1 }+\frac{ 1 }{ \csc x +1 }=\frac{ 1 }{ \sin x+1 }+\frac{ 1 }{ \dfrac{ 1 }{ \sin x } +1 }\] \[\frac{ 1 }{ \sin x+1 }+\frac{ 1 }{ \csc x +1 }=\frac{ 1 }{ \sin x+1 }+\frac{ 1 }{ \dfrac{ 1+\sin x }{ \sin x } }\] \[=\frac{ 1 }{ \sin x+1 }+\frac{ \sin x }{1+\sin x}\] \[=\frac{1(1+\sin x+\sin x(\sin x +1)}{(\sin x+1)^2}\] \[=\frac{1+\sin x+\sin^2 x +\sin x}{(\sin x +1)^2}\] \[=\frac{\sin^2 x+2\sin x +1}{(\sin x +1)^2}\] Factorise the numerator \[=\frac{(\sin x +1)^2}{(\sin x +1)^2}\] \[=1\]
anonymous
  • anonymous
\[1(1+\sin x+\sin x(\sin x+1)\] The numerator on one the lines was supposed to have a bracket somewhere. \[1(1+\sin x)+\sin x(\sin x+1)\]
anonymous
  • anonymous
on one of*

Looking for something else?

Not the answer you are looking for? Search for more explanations.