Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Verify (1/sinx+1) + (1/cscx+1) = 1

Precalculus
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
\[\large \frac{1}{1+\sin x}+\frac{1}{\csc x+1}\] Let's do some manipulation. We're going to take advantage of two of the three basic square identities that you first learn in trig.\[\large \color{royalblue}{\sin^2x+\cos^2x=1 \qquad \qquad \cot^2x+1=\csc^2x}\] In our problem, let's multiply the first term by the `conjugate` of the bottom.\[\large \color{orangered}{\frac{1-\sin x}{1-\sin x}}\frac{1}{1+\sin x}+\frac{1}{\csc x+1}\color{orangered}{\frac{\csc x-1}{\csc x-1}}\] When we multiply conjugates, we end up with the `Difference of squares` on the bottoms.\[\large \frac{1-\sin x}{1-\sin^2x}+\frac{\csc x-1}{\csc^2x-1}\]
Now we can use our blue identities,\[\large \color{royalblue}{\cos^2x=1-\sin^2x \qquad \qquad \cot^2x=\csc^2x-1}\] Using these identities gives us,\[\large \frac{1-\sin x}{\color{royalblue}{1-\sin^2x}}+\frac{\csc x-1}{\color{royalblue}{\csc^2x-1}} \qquad \rightarrow \qquad \frac{1-\sin x}{\color{royalblue}{\cos^2x}}+\frac{\csc x-1}{\color{royalblue}{\cot^2x}}\]
Recalling that, \[\large \color{brown}{\cot^2x=\frac{\cos^2x}{\sin^2x}}\]Gives us,\[\large \frac{1-\sin x}{\cos^2x}+\frac{\csc x-1}{\color{brown}{\dfrac{\cos^2x}{\sin^2x}}}\]Now notice that we're dividing by a fraction, which we can rewrite as multiplication if we `flip` the bottom fraction.\[\large \frac{1-\sin x}{\cos^2x}+\frac{\color{brown}{\sin^2x}(\csc x-1)}{\color{brown}{\cos^2x}}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Then distribute the sin^2x to each term in the brackets. There's only a little bit of simplification to do after that. Lemme know if you're still stuck on something.
It took a while to read that since most of the formatting didn't work, but I think I've got it now. Thanks c:
Formatting didn't work? :c If you refresh the page it usually fixes it. That stinks :d
I feel that the faster way of doing it without any identities is this. \[\csc x=\frac{1}{\sin x}\] \[\frac{ 1 }{ \sin x+1 }+\frac{ 1 }{ \csc x +1 }=\frac{ 1 }{ \sin x+1 }+\frac{ 1 }{ \dfrac{ 1 }{ \sin x } +1 }\] \[\frac{ 1 }{ \sin x+1 }+\frac{ 1 }{ \csc x +1 }=\frac{ 1 }{ \sin x+1 }+\frac{ 1 }{ \dfrac{ 1+\sin x }{ \sin x } }\] \[=\frac{ 1 }{ \sin x+1 }+\frac{ \sin x }{1+\sin x}\] \[=\frac{1(1+\sin x+\sin x(\sin x +1)}{(\sin x+1)^2}\] \[=\frac{1+\sin x+\sin^2 x +\sin x}{(\sin x +1)^2}\] \[=\frac{\sin^2 x+2\sin x +1}{(\sin x +1)^2}\] Factorise the numerator \[=\frac{(\sin x +1)^2}{(\sin x +1)^2}\] \[=1\]
\[1(1+\sin x+\sin x(\sin x+1)\] The numerator on one the lines was supposed to have a bracket somewhere. \[1(1+\sin x)+\sin x(\sin x+1)\]
on one of*

Not the answer you are looking for?

Search for more explanations.

Ask your own question