MoonlitFate
  • MoonlitFate
Find the limit.
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
abb0t
  • abb0t
How about you find the limit: \[\lim_{x \rightarrow 0}\left( \frac{ 3 }{ 2x }-\frac{ 3 }{ 2|x| } \right)\]
MoonlitFate
  • MoonlitFate
\[\lim x -> \frac{ 3\pi }{ 4 } \] \[[\theta * \tan(\theta)]\]
MoonlitFate
  • MoonlitFate
@abb0t - Challenge accepted. :p

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
tangent, and almost every function you know, is continuous on its domain so find \(\tan(\frac{3\pi}{4})\)
abb0t
  • abb0t
HAHA. Right on @MoonlitFate that's the spirit :D
MoonlitFate
  • MoonlitFate
tan(3*pi)/4 = -1
anonymous
  • anonymous
of course 0 is not in the domain of @abb0t question, so that method will clearly not work for that one
anonymous
  • anonymous
yup
anonymous
  • anonymous
and so \(\frac{3\pi}{4}\times -1=-\frac{3\pi}{4}\) is your answer
MoonlitFate
  • MoonlitFate
@satellite73 -- That's what I got; I just wanted to make sure I was right! :)
MoonlitFate
  • MoonlitFate
All right-- @abb0t now it's time for that problem.
anonymous
  • anonymous
yes, it is right
MoonlitFate
  • MoonlitFate
@abb0t -- There is no limit. :) The limit approaches different values from both sides of 0.

Looking for something else?

Not the answer you are looking for? Search for more explanations.