anonymous
  • anonymous
A particle starts at x(0) = 2. If its velocity is given by v(t) = ln(1+t), find its position at t = 5
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
campbell_st
  • campbell_st
the primitive of v(t) will give the displacement equation x(t) so find the indefinite integral of \[\int\limits \ln(1 + t) dt\] you also know that when t = 0, x(t) = 2 so the particle starts 2 units to the right of the origin. you will need to use these to evaluate the constant in the indefinite integral. Lastly, when you have your equation, substitute t = 5 and evaluate to find the postiion from the origin
anonymous
  • anonymous
by u substitution correct? i think i am doing that process wrong
campbell_st
  • campbell_st
well its a standard integral \[\int\limits \ln(ax + b) dx = \frac{(ax + b)}{a} \ln(ax + b) - x + c\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
oh that is where i get confused. lol. because i did: y = lnu u = 1+t dy/du = ulnu du/dx = 1 dy/dx = dy/du * du/dx and then i add that to the constant 2.
anonymous
  • anonymous
@zepdrix can you help me? loll maybe i'm thinking waaayy too much into this
campbell_st
  • campbell_st
you need to use integration by parts so f = ln(u) dg = du df = 1/u du g = u so then you have \[uln(u) - \int\limits 1 du\] which gives the integral of uln(u) - u and when u = t + 1 you get - t + (t + 1)(ln (t + 1) - 1) or (t + 1)log(t +1) - 1
anonymous
  • anonymous
AHHH ok thanks :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.