Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

\[\Large \int\limits_{1}^{2}(x-1)\sqrt{2-x}\space dx\]

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
im thinking integration by parts ... have you tried that?
wELL, i'M NEW TO INTEGRAL, i KNOW SOME TECHNIQUES BUT NOT COMPETELY CONFIDENT WITH IT. i'M CURRENTLY WORK WITH u-sUBSTITUTION. Sorry about caps.
I don't see how I can use u-substitution for this problem...

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

oh ok ... yeah substitution may work but i don't see it right away integration by parts is a technique when you have a product of 2 distinct functions \[\int\limits_{?}^{?} f(x) *g(x) dx\]
the equation is given as: \[\int\limits_{?}^{?} u*dv = uv -\int\limits_{?}^{?}v*du\] where u is f(x) and dv is g(x)
Ok, I'm giving it a try.
I don't think it will work. While I'm attempting to solve it, it's getting uglier.
no it will work but yes it can get uglier in the process ... anyway it takes some getting used to i found how u-substitution will work \[u = 2-x\] \[du = -dx\] \[\rightarrow -\int\limits_{?}^{?}(1-u) \sqrt{u} du = -\int\limits_{?}^{?} \sqrt{u} - u \sqrt{u}\]
Hmm clever! Thanks.
yw

Not the answer you are looking for?

Search for more explanations.

Ask your own question