Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

drasy22

  • 3 years ago

PLZ HELP#VERY CONFUSED rewrite each expression in term with no power greater than 1 cos^3 theta

  • This Question is Open
  1. drasy22
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    @jim_thompson5910

  2. drasy22
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\cos ^{3}\theta \]

  3. joemath314159
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    The only way I can think of doing this is using complex numbers. Using Euler's formula we know that:\[\cos \theta =\frac{e^{i\theta}+e^{-i\theta}}{2}\]Therefore:\[\cos^3\theta=\left(\frac{e^{i\theta}+e^{-i\theta}}{2}\right)^3\]\[=\frac{1}{2^3}\left(e^{3i\theta}+3e^{2i\theta}e^{-i\theta}+3e^{i\theta}e^{-2i\theta}+e^{-3i\theta}\right)\]\[=\frac{1}{2^3}\left(e^{3i\theta}+3e^{i\theta}+3e^{-i\theta}+e^{-3i\theta}\right)\]\[=\frac{1}{2^3}\left(e^{3i\theta}+e^{-3i\theta}\right)+\frac{3}{2^3}\left(e^{i\theta}+e^{-i\theta}\right)\]\[\frac{1}{4}\left(\frac{e^{3i\theta}+e^{-3i\theta}}{2}\right)+\frac{3}{4}\left(\frac{e^{i\theta}+e^{-i\theta}}{2}\right)\]Using Euler's formula again backwards yields:\[=\frac{1}{4}\cos 3\theta+\frac{3}{4}\cos \theta\]

  4. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy